Skip to main content

Structural Biology of Protein Post-transcriptional Modifications and Cellular Signaling

  • Chapter
Protein Modifications in Pathogenic Dysregulation of Signaling

Abstract

Post-translational modifications play critical roles in the regulation of signal transduction and cellular functions. Structural biology methods, including X-ray crystallography, are powerful tools for dissecting the molecular interaction mechanisms among the factors involved in these signaling pathways. Therefore, synergetic approaches by structural, molecular, and cellular biology are important to understand both the mechanisms of signal transduction by post-translational modifications and their pathogenic dysregulation. In this chapter, we introduce our recent results from structural and functional analyses of proteins involved in signal transduction by the post-transcriptional modifications. In the first section, we discuss the structural analyses of cGAS, which revealed the precise mechanism of the DNA-specific conformational activation of cGAS and cGAMP production. In the second section, we discuss the structural insights of the regulation of the NF-κB pathway by A20. In the final section, we discuss the crystal structure of a dnHLH protein, HHM, in an auto-inhibited form, which adopts a characteristic V-shaped structure. These results highlight the importance of synergetic approaches by collaborations between different biological fields.

To whom reprint requests should be addressed: Ryuichiro Ishitani: Phone: +81-3-5841-4392; Facsimile: +81-3-5841-8057; E-mail: ishitani@bs.s.u-tokyo.ac.jp

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Harashima A et al (2013) STING recognition of cytoplasmic DNA instigates cellular defense. Mol Cell 50:5–15

    Article  CAS  PubMed  Google Scholar 

  • Ablasser A, Goldeck M et al (2013) cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature (Lond) 498:380–384

    Article  CAS  Google Scholar 

  • Blackwell TK, Kretzner L, Blackwood EM et al (1990) Sequence-specific DNA-binding by the C-Myc protein. Science 250:1149–1151

    Article  CAS  PubMed  Google Scholar 

  • Bosanac I, Wertz IE, Pan B, Yu C, Kusam S, Lam C, Phu L, Phung Q, Maurer B, Arnott D et al (2010) Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling. Mol Cell 40:548–557

    Article  CAS  PubMed  Google Scholar 

  • Burdette DL, Monroe KM et al (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature (Lond) 478:515–518

    Article  CAS  Google Scholar 

  • Civril F, Deimling T et al (2013) Structural mechanism of cytosolic DNA sensing by cGAS. Nature (Lond) 498:332–337

    Article  CAS  Google Scholar 

  • Diner EJ, Burdette DL et al (2013) The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep 3:1355–1361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao P, Ascano M et al (2013a) Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153:1094–1107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao P, Ascano M et al (2013b) Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154:748–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hwang SY, Oh B, Fuchtbauer A et al (1997) Maid: a maternally transcribed novel gene encoding a potential negative regulator of bHLH proteins in the mouse egg and zygote. Dev Dyn 209:217–226

    Article  CAS  PubMed  Google Scholar 

  • Hymowitz SG, Wertz IE (2010) A20: from ubiquitin editing to tumour suppression. Nat Rev Cancer 10:332–341

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ikushima H, Komuro A, Isogaya K et al (2008) An Id-like molecule, HHM, is a synexpression group-restricted regulator of TGF-β signalling. EMBO J 27:2955–2965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwai K (2014) Diverse roles of the ubiquitin system in NF-κB activation. Biochim Biophys Acta 1843:129–136

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Sanada M, Kato I, Sato Y, Takita J, Takeuchi K, Niwa A, Chen Y, Nakazaki K, Nomoto J et al (2009) Frequent inactivation of A20 in B-cell lymphomas. Nature (Lond) 459:712–716

    Article  CAS  Google Scholar 

  • Kato K, Ishii R et al (2013) Structural and functional analyses of DNA-sensing and immune activation by human cGAS. PLoS One 8:e76983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Komander D, Barford D (2008) Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem J 409:77–85

    Article  CAS  PubMed  Google Scholar 

  • Kranzusch PJ, Lee AS et al (2013) Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep 3:1362–1368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kreider BL, Benezra R, Rovera G, Kadesch T (1992) Inhibition of myeloid differentiation by the helix-loop-helix protein Id. Science 255:1700–1702

    Article  CAS  PubMed  Google Scholar 

  • Li X, Shu C, Yi G, Chaton CT, Shelton CL, Diao J, Zuo X, Kao CC, Herr AB, Li P (2013) Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39:1019–1031

    Google Scholar 

  • Lin SC, Chung JY, Lamothe B, Rajashankar K, Lu M, Lo YC, Lam AY, Darnay BG, Wu H (2008) Molecular basis for the unique deubiquitinating activity of the NF-κB inhibitor A20. J Mol Biol 376:526–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Longo A, Guanga GP, Rose RB (2008) Crystal structure of E47-NeuroD1/beta2 bHLH domain-DNA complex: heterodimer selectivity and DNA recognition. Biochemistry (Mosc) 47:218–229. doi:10.1021/bi701527r

    Article  CAS  Google Scholar 

  • Ma W, Xia X, Stafford LJ et al (2006) Expression of GCIP in transgenic mice decreases susceptibility to chemical hepatocarcinogenesis. Oncogene 25:4207–4216

    Article  CAS  PubMed  Google Scholar 

  • Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20:429–440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190

    Article  CAS  PubMed  Google Scholar 

  • Murre C, McCaw PS, Vaessin H et al (1989) Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537–544

    Article  CAS  PubMed  Google Scholar 

  • Novak U, Rinaldi A, Kwee I, Nandula SV, Rancoita PM, Compagno M, Cerri M, Rossi D, Murty VV, Zucca E et al (2009) The NF-κB negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas. Blood 113:4918–4921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olson EN, Klein WH (1994) bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev 8:1–8

    Article  CAS  PubMed  Google Scholar 

  • Perk J, Iavarone A, Benezra R (2005) ID family of helix-loop-helix proteins in cancer. Nat Rev Cancer 5:603–614

    Article  CAS  PubMed  Google Scholar 

  • Rieser E, Cordier SM, Walczak H (2013) Linear ubiquitination: a newly discovered regulator of cell signalling. Trends Biochem Sci 38:94–102

    Article  CAS  PubMed  Google Scholar 

  • Schmitz R, Hansmann ML, Bohle V, Martin-Subero JI, Hartmann S, Mechtersheimer G, Klapper W, Vater I, Giefing M, Gesk S et al (2009) TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 206:981–989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sonnenberg-Riethmacher E, Wustefeld T, Miehe M et al (2007) Maid (GCIP) is involved in cell cycle control of hepatocytes. Hepatology 45:404–411

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Wu J et al (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–791

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  CAS  PubMed  Google Scholar 

  • Terai S, Aoki H, Ashida K, Thorgeirsson SS (2000) Human homologue of maid: a dominant inhibitory helix-loop-helix protein associated with liver-specific gene expression. Hepatology 32:357–366

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga F (2013) Linear ubiquitination-mediated NF-κB regulation and its related disorders. J Biochem (Tokyo) 154:313–323

    Article  CAS  Google Scholar 

  • Tokunaga F, Nishimasu H, Ishitani R, Goto E, Noguchi T, Mio K, Kamei K, Ma A, Iwai K, Nureki O (2012) Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation. EMBO J 31:3856–3870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walczak H, Iwai K, Dikic I (2012) Generation and physiological roles of linear ubiquitin chains. BMC Biol 10:23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL et al (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature (Lond) 430:694–699

    Article  CAS  Google Scholar 

  • Wibley J, Deed R, Jasiok M, Douglas K, Norton J (1996) A homology model of the Id-3 helix-loop-helix domain as a basis for structure-function predictions. Biochim Biophys Acta-Protein Struct Molec Enzym 1294(2):138–146

    Google Scholar 

  • Wu J, Sun L et al (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–830

    Article  CAS  PubMed  Google Scholar 

  • Zebedee Z, Hara E (2001) Id proteins in cell cycle control and cellular senescence. Oncogene 20:8317–8325

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Shi H et al (2013) Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 51:1–10

    Article  CAS  Google Scholar 

  • Zhang X, Wu J, Du F, Xu H et al (2014) The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep 4:421–430

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuichiro Ishitani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kato, K., Nishimasu, H., Ishii, R., Nureki, O., Ishitani, R. (2015). Structural Biology of Protein Post-transcriptional Modifications and Cellular Signaling. In: Inoue, Ji., Takekawa, M. (eds) Protein Modifications in Pathogenic Dysregulation of Signaling. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55561-2_8

Download citation

Publish with us

Policies and ethics