Skip to main content

Physics of Organic Field-Effect Transistors and the Materials

  • Chapter
Organic Electronics Materials and Devices
  • 2785 Accesses

Abstract

Organic semiconductors that were discovered more than half century ago in Japan (H. Inokuchi, Org. Electron. 7, 62 (2006)) are now transfigured into the practicable electronic materials by the recent concentrated studies of the materials, thin-film processing, and device fabrication technologies. In this chapter, we first present and discuss fundamental aspects of electronic phenomena in organic semiconductors as the bases to understand and study the organic electronics technologies. Then we discuss how to understand the charge-carrier transport in organic field-effect transistors (or more frequently refferd as organic thin-film transistors, or OTFTs). Finally we introduce recent studies to fabricate OTFTs by print production technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd edn. (Oxford University Press, New York, 1999)

    Google Scholar 

  2. G.H. Wagniere, Introduction to Elementary Molecular Orbital Theory and to Semiempirical Methods. Lecture Notes in Chemistry (Springer, Berlin/Heidelberg, 1976)

    Book  Google Scholar 

  3. T. Bally, W.T. Borden, in Reviews in Computational Chemistry, ed. by K.B. Lipkowitz, D.B. Boyd, vol. 13 (Wiley, New York, 1999)

    Chapter  Google Scholar 

  4. P. Prins, K. Senthilkumar, F.C. Grozema, P. Jonkheijm, A.P.H.J. Schennin, E.W. Meijer, L.D.A. Siebbeles, J. Phys. Chem. B 109, 18267–18274 (2005)

    Article  Google Scholar 

  5. ADF calculation were performed by using the PW91/TZP package. ADF2013.01, Scientific Computing & Modeling (SCM), Theoretical Chemisty, Vrije Universiteit: Amsterdam, The Netherlands. http://www.scm.com

  6. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2014)

    Google Scholar 

  7. W. Clegg (ed.), Crystal Structure Analysis: Principles and Practice (Oxford University Press, New York, 2009)

    Google Scholar 

  8. M. Yoneya, M. Kawasaki, M. Ando, J. Mater. Chem. 20, 10397–10402 (2010)

    Article  Google Scholar 

  9. F. Seitz, N.G. Einspruch, Electronic Genie: The Tangled History of Silicon (UI Press, Illinois, 1998)

    Google Scholar 

  10. S.M. Sze, Semiconductor Devices: Physics and Technology (Wiley, New York, 1985)

    Google Scholar 

  11. S.F. Nelson, Y.-Y. Lin, D.J. Gundlach, T.N. Jackson, Appl. Phys. Lett. 72, 1854 (1998)

    Article  Google Scholar 

  12. V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J.A. Rogers, M.E. Gershenson, Phys. Rev. Lett. 93, 086602 (2004)

    Article  Google Scholar 

  13. M.E. Gershenson, V. Podzorov, A.F. Morpurgo, Rev. Mod. Phys. 78, 973 (2006)

    Article  Google Scholar 

  14. R.A. Marcus, Rev. Mod. Phys. 65, 599 (1993)

    Article  Google Scholar 

  15. J. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 104, 4971 (2004)

    Article  Google Scholar 

  16. J. Jortner, J. Chem. Phys. 64, 4860 (1976)

    Article  Google Scholar 

  17. J. Takeya, J. Kato, K. Hara, M. Yamagishi, R. Hirahara, K. Yamada, Y. Nakazawa, S. Ikehata, K. Tsukagoshi, Y. Aoyagi, T. Takenobu, Y. Iwasa, Phys. Rev. Lett. 98, 196804 (2007)

    Article  Google Scholar 

  18. J.S. Miller, J.S. Miller (eds.), Extended Linear Chain Compounds, vol. 2 and 3 (Plenum Press, New York, 1983)

    Google Scholar 

  19. T. Ishiguro, K. Yamaji, G. Saito, Organic Superconductors. Springer Series in Solid-State Sciences, vol. 88 (Springer, Berlin, 1998)

    Google Scholar 

  20. A. Troisi, G. Orlandi, Phys. Rev. Lett. 96, 086601 (2006)

    Article  Google Scholar 

  21. J.-D. Picon, M.N. Bussac, L. Zuppiroli, Phys. Rev. B 75, 235106 (2007)

    Article  Google Scholar 

  22. S. Fratini, S. Ciuchi, Phys. Rev. Lett. 103, 266601 (2009)

    Article  Google Scholar 

  23. V. Coropceanu, M. Malagoli, D.A. da Silva Filho, N.E. Gruhn, T.G. Bill, J.L. Brédas, Phys. Rev. Lett. 89, 275503 (2002)

    Article  Google Scholar 

  24. N. Ueno, S. Kera, Prog. Sur. Sci. 83, 490 (2008)

    Article  Google Scholar 

  25. I.N. Hulea, S. Fratini, H. Xie, C.L. Mulder, N.N. Iossad, G. Rastelli, S. Ciuchi, A.F. Morpurgo, Nat. Mater. 5, 982 (2006)

    Article  Google Scholar 

  26. W.L. Kal, B. Batlogg, Phys. Rev. B 81, 035327 (2010)

    Article  Google Scholar 

  27. C.P. Slichter, Principles of Magnetic Resonance. Springer Series in Solid-State Sciences, vol. 1 (Springer, Berlin, 1996)

    Google Scholar 

  28. K. Marumoto et al., J. Phys. Soc. Jpn. 73, 1673 (2004)

    Article  Google Scholar 

  29. K. Marumoto et al., Phys. Rev. Lett. 97, 256603 (2006)

    Article  Google Scholar 

  30. H. Matsui, T. Hasegawa, Y. Tokura, M. Hiraoka, T. Yamada, Phys. Rev. Lett. 100, 126601 (2008)

    Article  Google Scholar 

  31. R. Kubo, K. Tomita, J. Phys. Soc. Jpn. 9, 888 (1954)

    Article  Google Scholar 

  32. P.W. Anderson, J. Phys. Soc. Jpn. 9, 316 (1954)

    Article  Google Scholar 

  33. H. Matsui, D. Kumaki, E. Takahashi, K. Takimiya, S. Tokito, T. Hasegawa, Phys. Rev. B 85, 035308 (2012)

    Article  Google Scholar 

  34. G. Horowitz, P. Delannoy, J. Appl. Phys. 70, 469 (1991)

    Article  Google Scholar 

  35. G. Horowitz, R. Hajloui, P. Delannoy, J. Phys. III 5, 355 (1995)

    Google Scholar 

  36. M.F. Calhoun, C. Hsieh, V. Podzorov, Phys. Rev. Lett. 98, 096402 (2007)

    Article  Google Scholar 

  37. H. Matsui, A.S. Mishchenko, T. Hasegawa, Phys. Rev. Lett. 104, 056602 (2010)

    Article  Google Scholar 

  38. A.S. Mishchenko, H. Matsui, T. Hasegawa, Phys. Rev. B 85, 085211 (2012)

    Article  Google Scholar 

  39. J.R. Bolton, J. Chem. Phys. 46, 408 (1967)

    Article  Google Scholar 

  40. T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, R.H. Friend, Thin Solid Films 279, 438 (2003)

    Google Scholar 

  41. H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa, Nature 475, 364 (2011)

    Article  Google Scholar 

  42. M. Ikawa, T. Yamada, H. Matsui, H. Minemawari, J. Tsutsumi, Y. Horii, M. Chikamatsu, R. Azumi, R. Kumai, T. Hasegawa, Nat. Commun. 3, 1176 (2012)

    Article  Google Scholar 

  43. J.C. Berg, An Introduction to Interfaces & Colloids – The Bridge to Nanoscience (World Scientific, Singapore, 2010)

    Google Scholar 

  44. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)

    Article  Google Scholar 

  45. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Nature 347, 539 (1990)

    Article  Google Scholar 

  46. H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, D.M. de Leeuw, Nature 401, 685 (1999)

    Article  Google Scholar 

  47. H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E.P. Woo, Science 290, 2123 (2000)

    Article  Google Scholar 

  48. J.E. Anthony, J.S. Brooks, D.L. Eaton, S.R. Parkin, J. Am. Chem. Soc. 123, 9482 (2001)

    Article  Google Scholar 

  49. H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, T. Yui, J. Am. Chem. Soc. 129, 15732 (2007)

    Article  Google Scholar 

  50. H. Yan, Z. Chen, Y. Zheng, C. Newman, J.R. Quinn, F. Doetz, M. Kastler, A. Facchetti, Nature 475, 679 (2009)

    Article  Google Scholar 

  51. X. Zhang, S.D. Hudson, D.M. DeLongchamp, D.J. Gundlach, M. Heeney, I. McCulloch, Adv. Funct. Mater. 20, 4098 (2010)

    Article  Google Scholar 

  52. D.W. Schubert, T. Dunkel, Mat. Res. Innovat. 7, 314 (2003)

    Article  Google Scholar 

  53. M. Hiraoka, T. Hasegawa, T. Yamada, Y. Takahashi, S. Horiuchi, Y. Tokura, Adv. Mater. 19, 3248 (2007)

    Article  Google Scholar 

  54. Y. Noda, H. Minemawari, H. Matsui, T. Yamada, S. Arai, T. Kajiya, M. Doi, T. Hasegawa Adv. Funct. Mater. 25, 4022 (2015)

    Google Scholar 

  55. A.D. Stroock et al., Science 295, 647 (2002)

    Article  Google Scholar 

  56. J.M. Ottino, S. Wiggins, Phil. Trans. R Soc. Lond. Math. Phys. Sci. 362, 923 (2004)

    Article  Google Scholar 

  57. T. Izawa, E. Miyazaki, K. Takimiya, Adv. Mater. 20, 3388 (2008)

    Article  Google Scholar 

  58. T. Uemura, Y. Hirose, M. Uno, K. Takimiya, J. Takeya, Appl. Phys. Expr 2, 111501 (2009)

    Article  Google Scholar 

  59. T. Minari, C. Liu, M. Kano, K. Tsukagoshi, Adv. Mater. 24, 299 (2012)

    Article  Google Scholar 

  60. B. Meredig, A. Salleo, R. Gee, ACS Nano 3, 2881 (2009)

    Article  Google Scholar 

  61. T. Umeda, D. Kumaki, S. Tokito, J. Appl. Phys. 105, 024516 (2009)

    Article  Google Scholar 

  62. W.L. Kalb, T. Mathis, S. Haas, A.F. Stassen, B. Batlogg, Appl. Phys. Lett. 90, 092104 (2007)

    Article  Google Scholar 

Download references

Acknowledgement

The author is grateful to Dr. Hiroyuki Matsui, Dr. Hiromi Minemawari, Dr. Yuki Noda, and Dr. Satoru Inoue, for their help in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuo Hasegawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Hasegawa, T. (2015). Physics of Organic Field-Effect Transistors and the Materials. In: Ogawa, S. (eds) Organic Electronics Materials and Devices. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55654-1_1

Download citation

Publish with us

Policies and ethics