Skip to main content

CagA

  • Chapter
  • First Online:
Helicobacter pylori

Abstract

Chronic infection with Helicobacter pylori cagA-positive strains is the strongest risk factor for gastric cancer. H. pylori injects the cagA-encoded CagA protein into the host gastric epithelial cells. Recent studies revealed that CagA acts as a pathogenic/oncogenic scaffold, which promotes oncogenic signaling in the delivered host cells. Indeed, CagA interacts with a variety of cellular proteins and deregulates their functions. More specifically, the N-terminal structured region of CagA associates with ASPP2 and RUNX3. The C-terminal disordered region of CagA possesses multiple segments containing the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif, which undergoes tyrosine phosphorylation by Src family kinases (SFKs), and the CagA-multimerization (CM) sequence. The EPIYA segments interact with SH2 domain-containing proteins such as SHP2 and Csk in a tyrosine phosphorylation-dependent manner, whereas the CM sequence binds to the polarity-regulating kinase PAR1 in a tyrosine phosphorylation-independent manner. We propose a hypothesis that mammalian proteome contains a distinct class of proteins carrying an EPIYA or EPIYA-like sequence, which are imitated by bacterial EPIYA effectors such as CagA to perturb intracellular signaling in the host cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi:10.3322/caac.21262.

    Article  PubMed  Google Scholar 

  2. Shanks AM, El-Omar EM. Helicobacter pylori infection, host genetics and gastric cancer. J Dig Dis. 2009;10(3):157–64. doi:10.1111/j.1751-2980.2009.00380.x.

    Article  CAS  PubMed  Google Scholar 

  3. Odenbreit S, Puls J, Sedlmaier B, Gerland E, Fischer W, Haas R. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science. 2000;287(5457):1497–500.

    Article  CAS  PubMed  Google Scholar 

  4. Rohde M, Püls J, Buhrdorf R, Fischer W, Haas R. A novel sheathed surface organelle of the Helicobacter pylori cag type IV secretion system. Mol Microbiol. 2003;49(1):219–34. doi:10.1046/j.1365-2958.2003.03549.x.

    Article  CAS  PubMed  Google Scholar 

  5. Fischer W. Assembly and molecular mode of action of the Helicobacter pylori Cag type IV secretion apparatus. FEBS J. 2011;278(8):1203–12. doi:10.1111/j.1742-4658.2011.08036.x.

    Article  CAS  PubMed  Google Scholar 

  6. Ekström AM, Held M, Hansson L-E, Engstrand L, Nyrén O. Helicobacter pylori in gastric cancer established by CagA immunoblot as a marker of past infection. Gastroenterology. 2001;121(4):784–91. doi:10.1053/gast.2001.27999.

    Article  PubMed  Google Scholar 

  7. Hatakeyama M. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer. 2004;4(9):688–94. doi:10.1038/nrc1433.

    Article  CAS  PubMed  Google Scholar 

  8. Parsonnet J, Friedman GD, Orentreich N, Vogelman H. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut. 1997;40(3):297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Daleke DL, Lyles JV. Identification and purification of aminophospholipid flippases. Biochim Biophys Acta. 2000;1486(1):108–27.

    Article  CAS  PubMed  Google Scholar 

  10. Murata-Kamiya N, Kikuchi K, Hayashi T, Higashi H, Hatakeyama M. Helicobacter pylori exploits host membrane phosphatidylserine for delivery, localization, and pathophysiological action of the CagA oncoprotein. Cell Host Microbe. 2010;7(5):399–411. doi:10.1016/j.chom.2010.04.005.

    Article  CAS  PubMed  Google Scholar 

  11. Backert S, Feller SM, Wessler S. Emerging roles of Abl family tyrosine kinases in microbial pathogenesis. Trends Biochem Sci. 2008;33(2):80–90. doi:10.1016/j.tibs.2007.10.006.

    Article  CAS  PubMed  Google Scholar 

  12. Mueller D, Tegtmeyer N, Brandt S, Yamaoka Y, De Poire E, Sgouras D, et al. c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains. J Clin Invest. 2012;122(4):1553–66. doi:10.1172/JCI61143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hatakeyama M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe. 2014;15(3):306–16. doi:10.1016/j.chom.2014.02.008.

    Article  CAS  PubMed  Google Scholar 

  14. Hayashi T, Senda M, Morohashi H, Higashi H, Horio M, Kashiba Y, et al. Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. Cell Host Microbe. 2012;12(1):20–33. doi:10.1016/j.chom.2012.05.010.

    Article  CAS  PubMed  Google Scholar 

  15. Kaplan-Turkoz B, Jimenez-Soto LF, Dian C, Ertl C, Remaut H, Louche A, et al. Structural insights into Helicobacter pylori oncoprotein CagA interaction with β1 integrin. Proc Natl Acad Sci USA. 2012;109(36):14640–5. doi:10.1073/pnas.1206098109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Buti L, Spooner E, Van der Veen AG, Rappuoli R, Covacci A, Ploegh HL. Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc Natl Acad Sci USA. 2011;108(22):9238–43. doi:10.1073/pnas.1106200108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nesic D, Buti L, Lu X, Stebbins CE. Structure of the Helicobacter pylori CagA oncoprotein bound to the human tumor suppressor ASPP2. Proc Natl Acad Sci USA. 2014;111(4):1562–7. doi:10.1073/pnas.1320631111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsang YH, Lamb A, Romero-Gallo J, Huang B, Ito K, Peek Jr RM, et al. Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation. Oncogene. 2010;29(41):5643–50. doi:10.1038/onc.2010.304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hatakeyama M. Anthropological and clinical implications for the structural diversity of the Helicobacter pylori CagA oncoprotein. Cancer Sci. 2011;102(1):36–43. doi:10.1111/j.1349-7006.2010.01743.x.

    Article  CAS  PubMed  Google Scholar 

  20. Higashi H, Tsutsumi R, Fujita A, Yamazaki S, Asaka M, Azuma T, et al. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci USA. 2002;99(22):14428–33. doi:10.1073/pnas.222375399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ren S, Higashi H, Lu H, Azuma T, Hatakeyama M. Structural basis and functional consequence of Helicobacter pylori CagA multimerization in cells. J Biol Chem. 2006;281(43):32344–52. doi:10.1074/jbc.M606172200.

    Article  CAS  PubMed  Google Scholar 

  22. Lu HS, Saito Y, Umeda M, Murata-Kamiya N, Zhang HM, Higashi H, et al. Structural and functional diversity in the PAR1b/MARK2-binding region of Helicobacter pylori CagA. Cancer Sci. 2008;99(10):2004–11. doi:10.1111/j.1349-7006.2008.00950.x.

    CAS  PubMed  Google Scholar 

  23. Muller A. Multistep activation of the Helicobacter pylori effector CagA. J Clin Invest. 2012;122(4):1192–5. doi:10.1172/JCI61578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Higashi H, Nakaya A, Tsutsumi R, Yokoyama K, Fujii Y, Ishikawa S, et al. Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. J Biol Chem. 2004;279(17):17205–16. doi:10.1074/jbc.M309964200.

    Article  CAS  PubMed  Google Scholar 

  25. Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M, et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science. 2002;295(5555):683–6. doi:10.1126/science.1067147.

    Article  CAS  PubMed  Google Scholar 

  26. Chan RJ, Feng GS. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood. 2007;109(3):862–7. doi:10.1182/blood-2006-07-028829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mohi MG, Neel BG. The role of Shp2 (PTPN11) in cancer. Curr Opin Genet Dev. 2007;17(1):23–30. doi:10.1016/j.gde.2006.12.011.

    Article  CAS  PubMed  Google Scholar 

  28. Tsutsumi R, Takahashi A, Azuma T, Higashi H, Hatakeyama M. Focal adhesion kinase is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA. Mol Cell Biol. 2006;26(1):261–76. doi:10.1128/MCB.26.1.261-276.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci. 2003;116(8):1409–16. doi:10.1242/jcs.00373.

    Article  CAS  PubMed  Google Scholar 

  30. Segal ED, Cha J, Lo J, Falkow S, Tompkins LS. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci USA. 1999;96(25):14559–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xia Y, Yamaoka Y, Zhu Q, Matha I, Gao X. A comprehensive sequence and disease correlation analyses for the C-terminal region of CagA protein of Helicobacter pylori. PLoS One. 2009;4(11):e7736. doi:10.1371/journal.pone.0007736.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tsutsumi R, Higashi H, Higuchi M, Okada M, Hatakeyama M. Attenuation of Helicobacter pylori CagA × SHP-2 signaling by interaction between CagA and C-terminal Src kinase. J Biol Chem. 2003;278(6):3664–70. doi:10.1074/jbc.M208155200.

    Article  CAS  PubMed  Google Scholar 

  33. Okada M. Regulation of the SRC family kinases by Csk. Int J Biol Sci. 2012;8(10):1385–97. doi:10.7150/ijbs.5141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Backert S, Tegtmeyer N, Selbach M. The versatility of Helicobacter pylori CagA effector protein functions: the master key hypothesis. Helicobacter. 2010;15(3):163–76. doi:10.1111/j.1523-5378.2010.00759.x.

    Article  CAS  PubMed  Google Scholar 

  35. Mimuro H, Suzuki T, Tanaka J, Asahi M, Haas R, Sasakawa C. Grb2 is a key mediator of Helicobacter pylori CagA protein activities. Mol Cell. 2002;10(4):745–55.

    Article  CAS  PubMed  Google Scholar 

  36. Saadat I, Higashi H, Obuse C, Umeda M, Murata-Kamiya N, Saito Y, et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature. 2007;447(7142):330–3. doi:10.1038/nature05765.

    Article  CAS  PubMed  Google Scholar 

  37. Suzuki A, Ohno S. The PAR-aPKC system: lessons in polarity. J Cell Sci. 2006;119(Pt 6):979–87. doi:10.1242/jcs.02898.

    Article  CAS  PubMed  Google Scholar 

  38. Lu H, Murata-Kamiya N, Saito Y, Hatakeyama M. Role of partitioning-defective 1/microtubule affinity-regulating kinases in the morphogenetic activity of Helicobacter pylori CagA. J Biol Chem. 2009;284(34):23024–36. doi:10.1074/jbc.M109.001008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nagase L, Murata-Kamiya N, Hatakeyama M. Potentiation of Helicobacter pylori CagA protein virulence through homodimerization. J Biol Chem. 2011;286(38):33622–31. doi:10.1074/jbc.M111.258673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell. 1997;89(2):297–308.

    Article  CAS  PubMed  Google Scholar 

  41. Umeda M, Murata-Kamiya N, Saito Y, Ohba Y, Takahashi M, Hatakeyama M. Helicobacter pylori CagA causes mitotic impairment and induces chromosomal instability. J Biol Chem. 2009;284(33):22166–72. doi:10.1074/jbc.M109.035766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saito Y, Murata-Kamiya N, Hirayama T, Ohba Y, Hatakeyama M. Conversion of Helicobacter pylori CagA from senescence inducer to oncogenic driver through polarity-dependent regulation of p21. J Exp Med. 2010;207(10):2157–74. doi:10.1084/jem.20100602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science. 2003;300(5624):1430–4. doi:10.1126/science.1081919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamahashi Y, Saito Y, Murata-Kamiya N, Hatakeyama M. Polarity-regulating kinase partitioning-defective 1b (PAR1b) phosphorylates guanine nucleotide exchange factor H1 (GEF-H1) to regulate RhoA-dependent actin cytoskeletal reorganization. J Biol Chem. 2011;286(52):44576–84. doi:10.1074/jbc.M111.267021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bagnoli F, Buti L, Tompkins L, Covacci A, Amieva MR. Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. Proc Natl Acad Sci USA. 2005;102(45):16339–44. doi:10.1073/pnas.0502598102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee DG, Kim HS, Lee YS, Kim S, Cha SY, Ota I, et al. Helicobacter pylori CagA promotes Snail-mediated epithelial-mesenchymal transition by reducing GSK-3 activity. Nat Commun. 2014;5:4423. doi:10.1038/ncomms5423.

    CAS  PubMed  Google Scholar 

  47. Wang J, Wynshaw-Boris A. The canonical Wnt pathway in early mammalian embryogenesis and stem cell maintenance/differentiation. Curr Opin Genet Dev. 2004;14(5):533–9. doi:10.1016/j.gde.2004.07.013.

    Article  CAS  PubMed  Google Scholar 

  48. Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science. 1991;251(5000):1451–5.

    Article  CAS  PubMed  Google Scholar 

  49. Murata-Kamiya N. Pathophysiological functions of the CagA oncoprotein during infection by Helicobacter pylori. Microbes Infect. 2011;13(10):799–807. doi:10.1016/j.micinf.2011.03.011.

    Article  CAS  PubMed  Google Scholar 

  50. Franco AT, Israel DA, Washington MK, Krishna U, Fox JG, Rogers AB, et al. Activation of β-catenin by carcinogenic Helicobacter pylori. Proc Natl Acad Sci USA. 2005;102(30):10646–51. doi:10.1073/pnas.0504927102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murata-Kamiya N, Kurashima Y, Teishikata Y, Yamahashi Y, Saito Y, Higashi H, et al. Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene. 2007;26(32):4617–26. doi:10.1038/sj.onc.1210251.

    Article  CAS  PubMed  Google Scholar 

  52. Kurashima Y, Murata-Kamiya N, Kikuchi K, Higashi H, Azuma T, Kondo S, et al. Deregulation of β-catenin signal by Helicobacter pylori CagA requires the CagA-multimerization sequence. Int J Cancer. 2008;122(4):823–31. doi:10.1002/ijc.23190.

    Article  CAS  PubMed  Google Scholar 

  53. Fujii Y, Yoshihashi K, Suzuki H, Tsutsumi S, Mutoh H, Maeda S, et al. CDX1 confers intestinal phenotype on gastric epithelial cells via induction of stemness-associated reprogramming factors SALL4 and KLF5. Proc Natl Acad Sci USA. 2012;109(50):20584–9. doi:10.1073/pnas.1208651109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149(6):1192–205. doi:10.1016/j.cell.2012.05.012.

    Article  CAS  PubMed  Google Scholar 

  55. Takahashi A, Tsutsumi R, Kikuchi I, Obuse C, Saito Y, Seidi A, et al. SHP2 tyrosine phosphatase converts parafibromin/Cdc73 from a tumor suppressor to an oncogenic driver. Mol Cell. 2011;43(1):45–56. doi:10.1016/j.molcel.2011.05.014.

    Article  CAS  PubMed  Google Scholar 

  56. Tsutsumi R, Masoudi M, Takahashi A, Fujii Y, Hayashi T, Kikuchi I, et al. YAP and TAZ, Hippo signaling targets, act as a rheostat for nuclear SHP2 function. Dev Cell. 2013;26(6):658–65. doi:10.1016/j.devcel.2013.08.013.

    Article  CAS  PubMed  Google Scholar 

  57. Watanabe T, Tada M, Nagai H, Sasaki S, Nakao M. Helicobacter pylori infection induces gastric cancer in mongolian gerbils. Gastroenterology. 1998;115(3):642–8.

    Article  CAS  PubMed  Google Scholar 

  58. Rieder G, Merchant JL, Haas R. Helicobacter pylori cag-Type IV secretion system facilitates corpus colonization to induce precancerous conditions in mongolian gerbils. Gastroenterology. 2005;128(5):1229–42. doi:10.1053/j.gastro.2005.02.064.

    Article  CAS  PubMed  Google Scholar 

  59. Ohnishi N, Yuasa H, Tanaka S, Sawa H, Miura M, Matsui A, et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci USA. 2008;105(3):1003–8. doi:10.1073/pnas.0711183105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Neal JT, Peterson TS, Kent ML, Guillemin K. H. pylori virulence factor CagA increases intestinal cell proliferation by Wnt pathway activation in a transgenic zebrafish model. Dis Model Mech. 2013;6(3):802–10. doi:10.1242/dmm.011163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hayashi T, Morohashi H, Hatakeyama M. Bacterial EPIYA effectors – where do they come from? What are they? Where are they going? Cell Microbiol. 2013;15(3):377–85. doi:10.1111/cmi.12040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Safari F. EPIYA (or -like) motifs in mammalian proteins. J King Saud Univ Sci. 2014;26(4):276–84. doi:10.1016/j.jksus.2014.05.001.

    Article  Google Scholar 

  63. Tanaka H, Katoh H, Negishi M. Pragmin, a novel effector of Rnd2 GTPase, stimulates RhoA activity. J Biol Chem. 2006;281(15):10355–64. doi:10.1074/jbc.M511314200.

    Article  CAS  PubMed  Google Scholar 

  64. Safari F, Murata-Kamiya N, Saito Y, Hatakeyama M. Mammalian Pragmin regulates Src family kinases via the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif that is exploited by bacterial effectors. Proc Natl Acad Sci USA. 2011;108(36):14938–43. doi:10.1073/pnas.1107740108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Weaver KL, Alves-Guerra MC, Jin K, Wang Z, Han X, Ranganathan P, et al. NACK is an integral component of the Notch transcriptional activation complex and is critical for development and tumorigenesis. Cancer Res. 2014;74(17):4741–51. doi:10.1158/0008-5472.CAN-14-1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Repetto D, Aramu S, Boeri Erba E, Sharma N, Grasso S, Russo I, et al. Mapping of p140Cap phosphorylation sites: the EPLYA and EGLYA motifs have a key role in tyrosine phosphorylation and Csk binding, and are substrates of the Abl kinase. PLoS One. 2013;8(1):e54931. doi:10.1371/journal.pone.0054931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Di Stefano P, Damiano L, Cabodi S, Aramu S, Tordella L, Praduroux A, et al. p140Cap protein suppresses tumour cell properties, regulating Csk and Src kinase activity. EMBO J. 2007;26(12):2843–55. doi:10.1038/sj.emboj.7601724.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kohjima M, Noda Y, Takeya R, Saito N, Takeuchi K, Sumimoto H. PAR3β, a novel homologue of the cell polarity protein PAR3, localizes to tight junctions. Biochem Biophys Res Commun. 2002;299(4):641–6.

    Article  CAS  PubMed  Google Scholar 

  69. Huo Y, Macara IG. The Par3-like polarity protein Par3L is essential for mammary stem cell maintenance. Nat Cell Biol. 2014;16(6):529–37. doi:10.1038/ncb2969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McCracken KW, Cata EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 2014;516(7531):400–4. doi:10.1038/nature13863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Hatakeyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Senda, Y., Hatakeyama, M. (2016). CagA. In: Suzuki, H., Warren, R., Marshall, B. (eds) Helicobacter pylori. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55705-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55705-0_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55704-3

  • Online ISBN: 978-4-431-55705-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics