Skip to main content

Physiological and Pathological Interactions Between Liver and Kidney

  • Chapter
  • First Online:
The Liver in Systemic Diseases

Abstract

Physiologically, the liver and kidney are two most crucial organs for maintenance of homeostasis and metabolic regulation in the body. Although both organs possess their unique functions, both are cooperative and/or compensative for some biological regulations such as hepatorenal reflex, glucose metabolism, EPO production, and excretion of exogenous substances. Thus, dysfunction of each organ may cause that of the other such as hepatorenal syndrome. Various types of renal diseases are also caused by various liver diseases; however, the opposite relation is rare. Coexistence of multi-organ diseases is caused by systemic disorders, which may also cause multi-organ interactions such as brain-heart-liver-kidney in metabolic syndrome. So far, treatments of some of these complexed pathological conditions have been established; evidences for benefits of treatments are not enough. Thus, RCTs on treatments of these interactions are needed in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adachi A. Thermosensitive and osmoreceptive afferent fibers in the hepatic branch of the vagus nerve. J Auton Nerve Syst. 1984;10:269–73.

    Article  CAS  Google Scholar 

  2. Morita H, Matsuda T, Furuya F, et al. Hepatorenal reflex plays an important role in natriuresis after high-NaCl food intake in conscious dogs. Circ Res. 1993;72:552–9.

    Article  CAS  PubMed  Google Scholar 

  3. Jimenez-Saenz M, Soria IC, Bernardez JR, et al. Renal sodium retention in portal hypertension and hepatorenal reflex: from practice to science. Hepatology. 2003;37:1494–5.

    Article  PubMed  Google Scholar 

  4. Lubel JS, Herath CB, Burrell LM, et al. Liver disease and the renin-angiotensin system: recent discoveries and clinical implications. J Gastroenterol Hepatol. 2008;23:1327–38.

    Article  CAS  PubMed  Google Scholar 

  5. Stanley AJ, Redhead DN, Bouchier IA, et al. Acute effects of transjugular intrahepatic portosystemic stent-shunt (TIPSS) procedure on renal blood flow and cardiopulmonary hemodynamics in cirrhosis. Am J Gastroenterol. 1998;93:2463–8.

    Article  CAS  PubMed  Google Scholar 

  6. Jalan R, Forrest EH, Redhead DN, et al. Reduction in renal blood flow following acute increase in the portal pressure: evidence for the existence of a hepatorenal reflex in man? Gut. 1997;40:664–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gentilini P, La Villa G. Liver-kidney pathophysiological interrelationships in liver diseases. Dig Liver Dis. 2008;40:909–19.

    Article  CAS  PubMed  Google Scholar 

  8. Ming Z, Smyth DD, Lautt WW. Decreases in portal flow trigger a hepatorenal reflex to inhibit renal sodium and water excretion in rats: role of adenosine. Hepatology. 2002;35:167–75.

    Article  CAS  PubMed  Google Scholar 

  9. Molino C, Fabbian F, Cozzolino M, et al. The management of viral hepatitis in CKD patients: an unresolved problem. Int J Artif Org. 2008;31:683–96.

    CAS  Google Scholar 

  10. Clinical guideline for treatment of HBV hepatitis edited by the Japan Society of Hepatology. 2nd ed. 2014.

    Google Scholar 

  11. Gentilini P, Laffi G, Buzzelli G, et al. Functional renal alternation in chronic liver disease. Digestion. 1980;20:66–72.

    Google Scholar 

  12. Jenq CC, Tsai MH, Tian YC, et al. RIFLE classification can predict short-term prognosis in critically ill cirrhotic patients. Intensiv Care Med. 2007;33:1921–30.

    Article  Google Scholar 

  13. Wan ZH, Wang JJ, You SL, et al. Cystatin C is a biomarker for predicting acute kidney injury in patients with acute-on-chronic liver failure. World J Gastroenterol. 2013;19(48):9432–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Venkat D, Venkat KK. Hepatorenal syndrome. South Med J. 2010;103:654–61.

    Article  PubMed  Google Scholar 

  15. Belcher JM, Sanyal AJ, Peixoto AJ, et al. Kidney biomarkers and differential diagnosis of patients with cirrhosis and acute kidney injury. Hepatology. 2014;60(2):622–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davenport A. Management of acute kidney injury in liver disease. Contrib Nephrol. 2010;165:197–205.

    Article  CAS  PubMed  Google Scholar 

  17. Salerno F, Gerbes A, Gibes P, et al. Diagnosis, prevention and treatment of the hepato-renal syndrome in cirrhosis. Gut. 2007;56:1310–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Triantos CK, Samonakis D, Thalheimer U, et al. Terlipressin therapy for renal failure in cirrhosis. Eur J Gastroenterol Hepatol. 2010;22:481–6.

    Article  CAS  PubMed  Google Scholar 

  19. Wong F, Pantea L, Sniderman K. Midodrine, octreotide, albumin, and TIPS in selected patients with cirrhosis and type 1 hepato-renal syndrome. Hepatology. 2004;40:55–64.

    Article  CAS  PubMed  Google Scholar 

  20. Navasa M, Feu F, Garcia-Pagan JV, et al. Impact of pretransplant renal function on survival after liver transplantation. Transplantation. 1995;59:361–5.

    Article  Google Scholar 

  21. Betrosian AP, Agarwal B, Douzinas EE. Acute renal dysfunction in liver diseases. World J Gastroenterol. 2007;13:5552–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ahya SN, JoseSoler M, Levitsky J, et al. Acid –base and potassium disorders in liver disease. Semin Nephrol. 2006;26:466–70.

    Article  CAS  PubMed  Google Scholar 

  23. Komatsuda A, Wakui H, Ohtani H, et al. Tubulointerstitial nephritis and renal tubular acidosis of different types are rare but important complications of primary biliary cirrhosis. Nephrol Dial Transplant. 2010;25(11):3575–9.

    Article  PubMed  Google Scholar 

  24. Lino M, Binaut R, Noël LH, et al. Tubulointerstitial nephritis and Fanconi syndrome in primary biliary cirrhosis. Am J Kidney Dis. 2005;46(3):e41–6. Steroid therapy can be beneficial in treating PBC patients with these renal complications.

    Article  PubMed  Google Scholar 

  25. Pouria S, Feehally J. Glomerular IgA deposition in liver disease. Nephrol Dial Transplant. 1999;14(10):2279–82.

    Article  CAS  PubMed  Google Scholar 

  26. Pouria S, Barratt J. Secondary IgA nephropathy. Semin Nephrol. 2008;28:27–37.

    Article  PubMed  Google Scholar 

  27. Ogata I, Fujiwara K, Nishi T, et al. Contribution of hepatic reticuloendothelial system to glomerular IgA deposition in rat liver injury. Am J Pathol. 1988;131(3):411–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang S, Lai FM, Liu YH, et al. Lamivudine in hepatitis B- associated membranous nephropathy. Kidney Int. 2005;68:1750–8.

    Article  CAS  PubMed  Google Scholar 

  29. Wen YK, Chen ML. Remission of hepatitis B virus-associated membranoproliferative glomerulonephritis in a cirrhotic patient after lamivudine therapy. Clin Nephrol. 2006;65:211–5.

    Article  CAS  PubMed  Google Scholar 

  30. Farrell GC, Teoh NC. Management of chronic hepatitis B infection: a new era of disease control. Intern Med J. 2006;36:100–13.

    Article  CAS  PubMed  Google Scholar 

  31. Johnson RJ, Gretch DR, Yamabe H, et al. Membranoproliferative glomerulonephritis associated with hepatitis C virus infection. N Engl J Med. 1993;328:465–70.

    Article  CAS  PubMed  Google Scholar 

  32. Fornasieri A, Armelloni S, Bernasconi P, et al. High binding of immunoglobulin M kappa rheumatoid factor from type II cryoglobulins to cellular fibronectin: a mechanism for induction of in situ immune complex glomerulonephritis? Am J Kidney Dis. 1996;27:476–83.

    Article  CAS  PubMed  Google Scholar 

  33. Sansonno D, Gesualdo L, Manno C, et al. Localization of HCV antigens in renal tissue of HCV-infected patients with cryoglobulinemic mesangiocapillary glomerulonephritis (MCGN). J Am Soc Nephrol. 1996;6:431.

    Google Scholar 

  34. Sabry AA, Sobh MA, Sheaashaa HA, et al. Effect of combination therapy (ribavirin and interferon) in HCV-related glomerulopathy. Nephrol Dial Transplant. 2007;17:1924–30.

    Article  Google Scholar 

  35. Sugiura T, Yamada T, Kimpara Y, et al. Effects of pegylated interferon alpha-2a on hepatitis-C-virus-associated glomerulonephritis. Pediatr Nephrol. 2009;24:199–202.

    Article  PubMed  Google Scholar 

  36. Roccatello D, Baldovino S, Rossi D, et al. Long-term effects of antiCD20 monoclonal antibody treatment of cryoglobunemic glomerulonephritis. Nephrol Dial Transplant. 2004;19:3035–61.

    Article  CAS  Google Scholar 

  37. Pirson Y. Extrarenal manifestations of autosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis. 2010;17:173–80.

    Article  PubMed  Google Scholar 

  38. Magdalena A, Mounif E-Y, Sandro R, et al. Clinical and molecular characterization defines a broad spectrum of autosomal recessive polycystic kidney disease (ARPKD). Medicine. 2006;85:1–25.

    Article  Google Scholar 

  39. Gunay-Aygun M. Liver and kidney disease in ciliopathies. Am J Med Genet Part C Sem Med Genet. 2009;151C:296–306.

    Article  CAS  Google Scholar 

  40. Hannah CC, Michael JC. The cell biology of polycystic kidney disease. J Cell Biol. 2010;191(4):701–10. doi:10.1083/jcb.201006173.

    Article  CAS  Google Scholar 

  41. Torres VE. Vasopressin in chronic kidney disease: an elephant in the room? Kidney Int. 2009;76:925–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Masyuk TV, Masyuk AI, Torres VE, et al. Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3′,5′-cyclic monophosphate. Gastroenterology. 2007;132:1104–16.

    Article  CAS  PubMed  Google Scholar 

  43. Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367(25):2407–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hogan MC, Masyuk TV, Page LJ, et al. Randomized clinical trial of long-acting somatostatin for autosomal dominant polycystic kidney and liver disease. J Am Soc Nephrol. 2010;21:1052–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gevers TJ, Inthout J, Caroli A, et al. Young women with polycystic liver disease respond best to somatostatin analogues: a pooled analysis of individual patient data. Gastroenterology. 2013;145(2):357–65.e1–2.

    Article  CAS  PubMed  Google Scholar 

  46. Belibi FA, Edelstein CL. Novel targets for the treatment of autosomal dominant polycystic kidney disease. Expert Opin Investig Drugs. 2010;19:315–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoshino J, Ubara Y, Suwabe T, et al. Intravascular embolization therapy in patients with enlarged polycystic liver. Am J Kidney Dis. 2014;63(6):937–44.

    Article  PubMed  Google Scholar 

  48. Hoshino J, Ubara Y, Ohashi K, et al. Pathologic improvement after high-dose melphalan and autologous stem cell transplantation in patients with for primary systemic amyloidosis. Nephro Dial Transplant Plus. 2008;6:414–6.

    Google Scholar 

  49. Chaulagain C. New insights and modern treatment of AL amyloidosis. Curr Hematol Malig Rep. 2013;8(4):291–8.

    Article  PubMed  Google Scholar 

  50. Mahmood S, Venner CP, Sachchithanantham S, et al. Lenalidomide and dexamethasone for systemic AL amyloidosis following prior treatment with thalidomide or bortezomib regimens. Br J Haematol. 2014;166(6):842–8.

    Article  CAS  PubMed  Google Scholar 

  51. Dember LM, Hawkins PN, Hazenberg BPC, et al. Eprodisate for the treatment of renal disease in AA amyloidosis. N Engl J Med. 2007;356:2349–60.

    Article  CAS  PubMed  Google Scholar 

  52. Bedogni G, Miglioli L, Masutti F, et al. Prevalence of and risk factors for non-alcoholic fatty liver disease: the Dionysos Nutrition and Liver Study. Hepatology. 2005;40:1387–95.

    Google Scholar 

  53. Marchesini G, Marzocchi R, Agostini F, et al. Nonalcoholic fatty liver disease and metabolic syndrome. Curr Opin Lipidol. 2005;16:421–7.

    Article  CAS  PubMed  Google Scholar 

  54. Bhala N, Jouness RI, Bugianesi E. Epidemiology and natural history of patients with NAFLD. Curr Pharm Des. 2013;19:5169–76.

    Article  CAS  PubMed  Google Scholar 

  55. Manco M, Marcellini M, Devito R, et al. Metabolic syndrome and liver histology in paediatric non-alcoholic steatohepatitis. Int J Obes (Lond). 2008;32:381–7.

    Article  CAS  Google Scholar 

  56. Manco M, Bedogni G, Marcellini M, et al. Waist circumference correlates with liver fibrosis in children with nonalcoholic steatohepatitis. Gut. 2008;57:1283–7.

    Article  CAS  PubMed  Google Scholar 

  57. Review team: LaBrecque D, Abba Z, Anania F et al. World gastroenterology organisation global guidelines nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. 2012.

    Google Scholar 

  58. Nagaoki Y, Hyogo H, Aikata H, et al. Recent trend of clinical features in patients with hepatocellular carcinoma. Hepatol Res. 2012;42:368–75.

    Article  CAS  PubMed  Google Scholar 

  59. Baffy G, Brunt EM, Caldwell HJ. Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. Hepatology. 2012;56(6):1384–13.

    Article  Google Scholar 

  60. Neuschwander-Tetri BA, Clark JM, Bass NM, et al. Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease. Hepatology. 2010;52:913–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Musso G, Gambino R, Cassader M. Non-alcoholic fatty liver disease from pathogenesis to management: an update. Obes Rev. 2010;11:430–45.

    Article  CAS  PubMed  Google Scholar 

  62. Torres DM M.D., Stephen A, Harrison MD. Nonalcoholic steatohepatitis and noncirrhotic hepatocellular carcinoma. Semin Liver Dis. 2012;32(1):30–8.

    Article  CAS  PubMed  Google Scholar 

  63. Sumida Y, Yoneda M, Hyogo H, et al. A simple clinical scoring system using ferritin, fasting insulin, and type IV collagen 7S for predicting steatohepatitis in nonalcoholic fatty liver disease. J Gastroenterol. 2011;46(2):257–68.

    Article  CAS  PubMed  Google Scholar 

  64. Levin A, Stevens PE. Summary of KDIGO 2012 CKD guideline. Behind the scenes, need for guidance, and a framework for moving forward. Kidney Int. 2014;85(1):49–61.

    Article  PubMed  Google Scholar 

  65. Gelber RP, Kurth T, Kausz AT, et al. Association between body mass index and CKD in apparently healthy men. Am J Kidney Dis. 2005;46:871–80.

    Article  PubMed  Google Scholar 

  66. Hsu CY, McCulloch CE, Iribarren C, et al. Body mass index and risk for end-stage renal disease. Ann Intern Med. 2006;144:21–8.

    Article  PubMed  Google Scholar 

  67. Chen J, Muntner P, Hamm LL, et al. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med. 2004;140:167–74.

    Article  PubMed  Google Scholar 

  68. Parvanova AI, Trevisan R, Iliev IP, et al. Insulin resistance and microalbuminuria: a cross-sectional, case-control study of 158 patients with type 2 diabetes and different degrees of urinary albumin excretion. Diabetes. 2006;55:1456–62.

    Article  CAS  PubMed  Google Scholar 

  69. Kurella M, Lo JC, Chertow GM, et al. Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J Am Soc Nephrol. 2005;16:2134–40.

    Article  PubMed  Google Scholar 

  70. Kambham N, Markowitz GS, Valeri AM, et al. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 2001;59(4):1498–509.

    Article  CAS  PubMed  Google Scholar 

  71. Praga M, Hernández E, Morales E, et al. Clinical features and long-term outcome of obesity-associated focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2001;16:1790–8.

    Article  CAS  PubMed  Google Scholar 

  72. Chen HM, Chen Y, Zhang YD, et al. Evaluation of metabolic risk marker in obesity-related glomerulopathy. J Renal Nutr. 2011;21(4):309–15.

    Article  CAS  Google Scholar 

  73. Wu Y, Liu Z, Xiang Z, et al. Obesity-related glomerulopathy: insights from gene expression profiles of the glomeruli derived from renal biopsy samples. Endocrinology. 2006;147(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  74. Targher G, Bertolini L, Rodella S, et al. Non-alcoholic fatty liver disease is independently associated with an increased prevalence of chronic kidney disease and proliferative/laser-treated retinopathy in type 2 diabetic patients. Diabetologia. 2008;51:444–50.

    Article  CAS  PubMed  Google Scholar 

  75. Chang Y, Ryu S, Sung E, et al. Nonalcoholic fatty liver disease predicts chronic kidney disease in nonhypertensive and nondiabetic Korean men. Metabolism. 2008;57(4):569–76.

    Article  CAS  PubMed  Google Scholar 

  76. Musso G, Gambino R, Tabibian JH, et al. Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLoS Med. 2014;11(7):e1001680. PMID:25050550.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Manco M, Ciampalini P, DeVito R, et al. Albuminuria and insulin resistance in children with biopsy proven non-alcoholic fatty liver disease. Pediatr Nephrol. 2009;24:1211–7.

    Article  PubMed  Google Scholar 

  78. Ix JH, Sharma K. Mechanisms linking obesity, chronic kidney disease, and fatty liver disease: the roles of fetuin-A, adiponectin, and AMPK. J Am Soc Nephrol. 2010;21:406–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sesti G, Fiorentino TV, Arturi F, et al. Association between noninvasive fibrosis markers and chronic kidney disease among adults with nonalcoholic fatty liver disease. PLoS One. 2014;9(2):e88569. PMID:24520400.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Carbone F, Montecucco F, Mach F, et al. The liver and the kidney: two critical organs influencing the atherothrombotic risk in metabolic syndrome. Thromb Haemost. 2013;110(5):940–58.

    Article  CAS  PubMed  Google Scholar 

  81. Musso G, Cassader M, Rosina F, et al. Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials. Diabetologia. 2012;55(4):885–904.

    Article  CAS  PubMed  Google Scholar 

  82. Kistler KD, Brunt EM, Clark JM, et al. Physical activity recommendations, exercise intensity, and histological severity of nonalcoholic fatty liver disease. Am J Gastroenterol. 2011;106(3):460–8; quiz 469.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Shen WW, Chen HM, Chen H, et al. Obesity-related glomerulopathy: body mass index and proteinuria. Clin J Am Soc Nephrol. 2010;5:1401–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fowler SM, Kon V, Ma L, et al. Obesity-related focal and segmental glomerulosclerosis: normalization of proteinuria in an adolescent after bariatric surgery. Pediatr Nephrol. 2009;24(4):851–5.

    Article  PubMed  Google Scholar 

  85. Chagnac A, Weinstein T, Herman M, et al. The effects of weight loss on renal function in patients with severe obesity. J Am Soc Nephrol. 2003;14(6):1480–6.

    Article  PubMed  Google Scholar 

  86. Bell LN, Wang J, Muralidharan S, et al. Relationship between adipose tissue insulin resistance and liver histology in nonalcoholic steatohepatitis: a pioglitazone versus vitamin E versus placebo for the treatment of nondiabetic patients with nonalcoholic steatohepatitis trial follow-up study. Hepatology. 2012;56(4):1311–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ji HF, Sun Y, Shen L. Effect of vitamin E supplementation on aminotransferase levels in patients with NAFLD, NASH, and CHC: results from a meta-analysis. Nutrition. 2014;30(9):986–91.

    Article  CAS  PubMed  Google Scholar 

  88. Pacana T, Sanyal AJ. Vitamin E and nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care. 2012;15(6):641–8.

    Article  CAS  PubMed  Google Scholar 

  89. Pietu F, Guillaud O, Walter T, et al. Ursodeoxycholic acid with vitamin E in patients with nonalcoholic steatohepatitis: long-term results. Clin Res Hepatol Gastroenterol. 2012;36(2):146–55. PMID:22154224.

    Article  CAS  PubMed  Google Scholar 

  90. Lavine JE, Schwimmer JB, Van Natta ML, et al. Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial. JAMA. 2011;305(16):1659–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tain YL, Freshour G, Dikalova A, et al. Vitamin E reduces glomerulosclerosis, restores renal neuronal NOS, and suppresses oxidative stress in the 5/6 nephrectomized rat. Am J Physiol Renal Physiol. 2007;292(5):F1404–10.

    Article  CAS  PubMed  Google Scholar 

  92. Van Wagner LB, Koppe SW, Brunt EM, et al. Pentoxifylline for the treatment of non-alcoholic steatohepatitis: a randomized controlled trial. Ann Hepatol. 2011;10(3):277–86. PMID:21677329.

    PubMed  Google Scholar 

  93. Satapathy SK, Sakhuja P, Malhotra V, et al. Beneficial effects of pentoxifylline on hepatic steatosis, fibrosis and necroinflammation in patients with non-alcoholic steatohepatitis. J Gastroenterol Hepatol. 2007;22(5):634–8. PMID:17444848.

    CAS  PubMed  Google Scholar 

  94. Lin SL, Chen YM, Chiang WC, et al. Effect of pentoxifylline in addition to losartan on proteinuria and GFR in CKD: a 12-month randomized trial. Am J Kidney Dis. 2008;52(3):464–74.

    Article  CAS  PubMed  Google Scholar 

  95. Zein CO, Lopez R, Fu X, et al. Pentoxifylline decreases oxidized lipid products in nonalcoholic steatohepatitis: new evidence on the potential therapeutic mechanism. Hepatology. 2012;56(4):1291–9. PMID:22505276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Du J, Ma YY, Yu CH, et al. Effects of pentoxifylline on nonalcoholic fatty liver disease: a meta-analysis. World J Gastroenterol. 2014;20(2):569–77. PMID:24574727.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Badri S, Dashti-Khavidaki S, Lessan-Pezeshki M, et al. A review of the potential benefits of pentoxifylline in diabetic and non-diabetic proteinuria. J Pharm Pharm Sci. 2011;14(1):128–37.

    Article  CAS  PubMed  Google Scholar 

  98. Perkins RM, Aboudara MC, Uy AL, et al. Effect of pentoxifylline on GFR decline in CKD: a pilot, double-blind, randomized, placebo-controlled trial. Am J Kid Dis. 2009;53(4):606–16.

    Article  CAS  PubMed  Google Scholar 

  99. Yki-Järvinen H. Thiazolidinediones and the liver in humans. Curr Opin Lipidol. 2009;20(6):477–83.

    Article  PubMed  CAS  Google Scholar 

  100. Torres DM, Jones FJ, Shaw JC, et al. Rosiglitazone versus rosiglitazone and metformin versus rosiglitazone and losartan in the treatment of nonalcoholic steatohepatitis in humans: a 12-month randomized, prospective, open- label trial. Hepatology. 2011;54(5):1631–9.

    Article  CAS  PubMed  Google Scholar 

  101. Duseja A, Das A, Dhiman RK, et al. Metformin is effective in achieving biochemical response in patients with nonalcoholic fatty liver disease (NAFLD) not responding to lifestyle interventions. Ann Hepatol. 2007;6(4):222–6.

    CAS  PubMed  Google Scholar 

  102. Loomba R, Lutchman G, Kleiner DE, et al. Clinical trial: pilot study of metformin for the treatment of non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2009;29(2):172–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Doycheva I, Loomba R. Effect of metformin on ballooning degeneration in nonalcoholic steatohepatitis (NASH): when to use metformin in nonalcoholic fatty liver disease (NAFLD). Adv Ther. 2014;31(1):30–43.

    Article  CAS  PubMed  Google Scholar 

  104. Boettcher E, Csako G, Pucino F, et al. Meta-analysis: pioglitazone improves liver histology and fibrosis in patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2012;35(1):66–75.

    Article  CAS  PubMed  Google Scholar 

  105. Rakoski MO, Singal AG, Rogers MA, et al. Meta-analysis: insulin sensitizers for the treatment of non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2010;32(10):1211–21.

    Article  CAS  PubMed  Google Scholar 

  106. Shyangdan D, Clar C, Ghouri N, et al. Insulin sensitisers in the treatment of non-alcoholic fatty liver disease: a systematic review. Health Technol Assess. 2011;15(38):1–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362(18):1675–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yan Z, Ni Y, Wang P, et al. Peroxisome proliferator-activated receptor delta protects against obesity-related glomerulopathy through the P38 MAPK pathway. Obesity. 2013;21(3):538–45.

    Article  CAS  PubMed  Google Scholar 

  109. Kong X, Zhang DY, Wu HB, et al. Losartan and pioglitazone ameliorate nephropathy in experimental metabolic syndrome rats. Biol Pharm Bull. 2011;34(5):693–9.

    Article  CAS  PubMed  Google Scholar 

  110. Ochodnicky P, Mesarosova L, Cernecka H, et al. Pioglitazone, a PPAR agonist, provides comparable protection to angiotensin converting enzyme inhibitor ramipril against adriamycin nephropathy in rat. Eur J Pharmacol. 2014;730:51–60.

    Article  CAS  PubMed  Google Scholar 

  111. Huang Y, Lei Y, Zheng Z, et al. Rosiglitazone alleviates injury in rats with adenine-induced chronic kidney disease. Mol Med Rep. 2013;8(6):1831–5.

    CAS  PubMed  Google Scholar 

  112. Higashi K, Oda T, Kushiyama T, et al. Additive antifibrotic effects of pioglitazone and candesartan on experimental renal fibrosis in mice. Nephrology. 2010;15(3):327–35.

    Article  CAS  PubMed  Google Scholar 

  113. Yang HC, Deleuze S, Zuo Y, et al. The PPARgamma agonist pioglitazone ameliorates aging-related progressive renal injury. J Am Soc Nephrol. 2009;20(11):2380–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jin HM, Pan Y. Renoprotection provided by losartan in combination with pioglitazone is superior to renoprotection provided by losartan alone in patients with type 2 diabetic nephropathy. Kidney Blood Press Res. 2007;30(4):203–11.

    Article  CAS  PubMed  Google Scholar 

  115. Satriano J, Sharma K, Blantz RC, et al. Induction of AMPK activity corrects early pathophysiological alterations in the subtotal nephrectomy model of chronic kidney disease. Am J Physiol Renal Physiol. 2013;305(5):F727–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Inzucchi SE, Lipska KJ, Mayo H, et al. Metformin in patients with type 2 diabetes and kidney disease: a systematic review. JAMA. 2014;312(24):2668–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Wang W, Zhao C, Zhou J, et al. Simvastatin ameliorates liver fibrosis via mediating nitric oxide synthase in rats with non-alcoholic steatohepatitis-related liver fibrosis. PLoS One. 2013;8(10):e76538. PMID:24098525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Van Rooyen DM, Gan LT, Yeh MM, et al. Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome. J Hepatol. 2013;59(1):144–52.

    Article  PubMed  CAS  Google Scholar 

  119. Kimura Y, Hyogo H, Yamagishi S, et al. Atorvastatin decreases serum levels of advanced glycation endproducts (AGEs) in nonalcoholic steatohepatitis (NASH) patients with dyslipidemia: clinical usefulness of AGEs as a biomarker for the attenuation of NASH. J Gastroenterol. 2010;45(7):750–7.

    Article  CAS  PubMed  Google Scholar 

  120. Nseir W, Mograbi J, Ghali M. Lipid-lowering agents in nonalcoholic fatty liver disease and steatohepatitis: human studies. Dig Dis Sci. 2012;57(7):1773–81.

    Article  CAS  PubMed  Google Scholar 

  121. Eslami L, Merat S, Malekzadeh R, et al. Statins for non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Cochrane Database Syst Rev. 2013;12:CD008623.

    PubMed  Google Scholar 

  122. Douglas K, O’Malley PG, Jackson JL. Meta-analysis: the effect of statins on albuminuria. Ann Intern Med. 2006;145(2):117–24.

    Article  CAS  PubMed  Google Scholar 

  123. Sandhu S, Wiebe N, Fried LF, et al. Statins for improving renal outcomes: a meta-analysis. J Am Soc Nephrol. 2006;17(7):2006–16.

    Article  CAS  PubMed  Google Scholar 

  124. Strippoli GF, Navaneethan SD, Johnson DW, et al. Effects of statins in patients with chronic kidney disease: meta-analysis and meta-regression of randomised controlled trials. BMJ. 2008;336(7645):645–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Palmer SC, Navaneethan SD, Craig JC, et al. HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database Syst Rev. 2014;5:CD007784.

    PubMed  Google Scholar 

  126. Lopez-Huertas E. The effect of EPA and DHA on metabolic syndrome patients: a systematic review of randomised controlled trials. Br J Nutr. 2012;107 Suppl 2:S185–94.

    Article  CAS  PubMed  Google Scholar 

  127. Kajikawa S, Imada K, Takeuchi T, et al. Eicosapentaenoic acid attenuates progression of hepatic fibrosis with inhibition of reactive oxygen species production in rats fed methionine- and choline-deficient diet. Dig Dis Sci. 2011;56(4):1065–74.

    Article  CAS  PubMed  Google Scholar 

  128. Depner CM, Philbrick KA, Jump DB. Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr (-/-) mouse model of western diet-induced nonalcoholic steatohepatitis. J Nutr. 2013;143(3):315–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Depner CM, Traber MG, Bobe G, et al. A metabolomic analysis of omega-3 fatty acid-mediated attenuation of western diet-induced nonalcoholic steatohepatitis in LDLR-/- mice. PLoS One. 2013;8(12):e83756. PMID:24358308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Tanaka N, Sano K, Horiuchi A, et al. Highly purified eicosapentaenoic acid treatment improves nonalcoholic steatohepatitis. J Clin Gastroenterol. 2008;42(4):413–8.

    Article  CAS  PubMed  Google Scholar 

  131. Scorletti E, Bhatia L, McCormick KG, et al. Effects of purified eicosapentaenoic and docosahexaenoic acids in non-alcoholic fatty liver disease: results from the *WELCOME study. Hepatology. 2014;60:1211–21. PMID:25043514.

    Article  CAS  PubMed  Google Scholar 

  132. Sakurai K, et al. Dietary Perilla seed oil supplement increases plasma omega-3 polyunsaturated fatty acids and ameliorates immunoglobulin A nephropathy in high immunoglobulin A strain of ddY mice. Nephron Exp Nephrol. 2011;119:e33–9.

    Article  CAS  PubMed  Google Scholar 

  133. Katakura M, Hashimoto M, Inoue T, et al. Omega-3 fatty acids protect renal functions by increasing docosahexaenoic acid-derived metabolite levels in SHR.Cg-Lepr (cp)/NDmcr rats, a metabolic syndrome model. Molecules. 2014;19(3):3247–63.

    Article  PubMed  CAS  Google Scholar 

  134. Mehta RL, Kellum JA, Shah SV, Acute Kidney Injury Network, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Watanabe, T. (2016). Physiological and Pathological Interactions Between Liver and Kidney. In: Ohira, H. (eds) The Liver in Systemic Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55790-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55790-6_11

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55789-0

  • Online ISBN: 978-4-431-55790-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics