Skip to main content

Sialylation and Immune Surveillance of Cancer by Siglecs

  • Chapter
  • First Online:
Glycosignals in Cancer: Mechanisms of Malignant Phenotypes

Abstract

Changes in cell surface glycosylation are a key feature of cancer initiation and progression. Sialic acid is a major glycan attached to extracellular proteins and lipids. Altered sialylation in cancer can impact at many levels and may result in improved cancer cell survival and spread. Here we focus on sialic acid-dependent interactions of tumour cells with sialic acid-binding Ig-like lectins (siglecs). These proteins are expressed broadly in the immune system and can modulate cellular functions in diverse ways. We discuss changes in sialylation commonly observed in tumours and the emerging role of siglecs in modulating both host immune responses and tumour responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Belisle JA, Horibata S, Jennifer GA, Petrie S, Kapur A, Andre S, Gabius HJ, Rancourt C, Connor J, Paulson JC, Patankar MS (2010) Identification of Siglec-9 as the receptor for MUC16 on human NK cells, B cells, and monocytes. Mol Cancer 9:118. doi:10.1186/1476-4598-9-118

    Article  PubMed Central  PubMed  Google Scholar 

  • Birks SM, Danquah JO, King L, Vlasak R, Gorecki DC, Pilkington GJ (2011) Targeting the GD3 acetylation pathway selectively induces apoptosis in glioblastoma. Neuro Oncol 13(9):950–960. doi:10.1093/neuonc/nor108nor108 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bobowski M, Vincent A, Steenackers A, Colomb F, Van Seuningen I, Julien S, Delannoy P (2013) Estradiol represses the G(D3) synthase gene ST8SIA1 expression in human breast cancer cells by preventing NFkappaB binding to ST8SIA1 promoter. PLoS One 8(4):e62559. doi:10.1371/journal.pone.0062559PONE-D-12-26811 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao H, Crocker PR (2011) Evolution of CD33-related siglecs: regulating host immune functions and escaping pathogen exploitation? Immunology 132(1):18–26. doi:10.1111/j.1365-2567.2010.03368.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cazet A, Julien S, Bobowski M, Burchell J, Delannoy P (2010) Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Res 12(3):204. doi:10.1186/bcr2577

    Article  PubMed Central  PubMed  Google Scholar 

  • Christiansen MN, Chik J, Lee L, Anugraham M, Abrahams JL, Packer NH (2013) Cell surface protein glycosylation in cancer. Proteomics. doi:10.1002/pmic.201300387

    Google Scholar 

  • Collins BE, Blixt O, DeSieno AR, Bovin N, Marth JD, Paulson JC (2004) Masking of CD22 by cis ligands does not prevent redistribution of CD22 to sites of cell contact. Proc Natl Acad Sci U S A 101(16):6104–6109. doi:10.1073/pnas.04008511010400851101 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crocker PR, Clark EA, Filbin M, Gordon S, Jones Y, Kehrl JH, Kelm S, Le Douarin N, Powell L, Roder J, Schnaar RL, Sgroi DC, Stamenkovic K, Schauer R, Schachner M, van den Berg TK, van der Merwe PA, Watt SM, Varki A (1998) Siglecs: a family of sialic-acid binding lectins. Glycobiology 8(2):v

    Article  CAS  PubMed  Google Scholar 

  • Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7(4):255–266. doi:10.1038/nri2056, nri2056 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Daniotti JL, Iglesias-Bartolome R (2011) Metabolic pathways and intracellular trafficking of gangliosides. IUBMB Life 63(7):513–520. doi:10.1002/iub.477

    Article  CAS  PubMed  Google Scholar 

  • Gomes C, Osorio H, Pinto MT, Campos D, Oliveira MJ, Reis CA (2013) Expression of ST3GAL4 leads to SLe(x) expression and induces c-Met activation and an invasive phenotype in gastric carcinoma cells. PLoS One 8(6), e66737. doi:10.1371/journal.pone.0066737PONE-D-13-02396 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gu J, Taniguchi N (2004) Regulation of integrin functions by N-glycans. Glycoconj 8(4):e62559. doi:10.1023/B:GLYC.0000043741.47559.30, 5277444 [pii]

    Google Scholar 

  • Gubbels JA, Felder M, Horibata S, Belisle JA, Kapur A, Holden H, Petrie S, Migneault M, Rancourt C, Connor JP, Patankar MS (2010) MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells. Mol Cancer 9:11. doi:10.1186/1476-4598-9-111476-4598-9-11 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  • Handa K, Hakomori SI (2012) Carbohydrate to carbohydrate interaction in development process and cancer progression. Glycoconj J 29(8–9):627–637. doi:10.1007/s10719-012-9380-7

    Article  CAS  PubMed  Google Scholar 

  • Holst S, Stavenhagen K, Balog CI, Koeleman CA, McDonnell LM, Mayboroda OA, Verhoeven A, Mesker WE, Tollenaar RA, Deelder AM, Wuhrer M (2013) Investigations on aberrant glycosylation of glycosphingolipids in colorectal cancer tissues using liquid chromatography and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS). Mol Cell Proteomics 12(11):3081–3093. doi:10.1074/mcp.M113.030387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hudak JE, Canham SM, Bertozzi CR (2014) Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat Chem Biol 10(1):69–75. doi:10.1038/nchembio.1388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ito H, Hiraiwa N, Sawada-Kasugai M, Akamatsu S, Tachikawa T, Kasai Y, Akiyama S, Ito K, Takagi H, Kannagi R (1997) Altered mRNA expression of specific molecular species of fucosyl- and sialyl-transferases in human colorectal cancer tissues. Int J Cancer 71(4):556–564. doi:10.1002/(SICI)1097-0215(19970516)71:4<556::AID-IJC9>3.0.CO;2-T [pii]

    Article  CAS  PubMed  Google Scholar 

  • Julien S, Lagadec C, Krzewinski-Recchi MA, Courtand G, Le Bourhis X, Delannoy P (2005) Stable expression of sialyl-Tn antigen in T47-D cells induces a decrease of cell adhesion and an increase of cell migration. Breast Cancer Res Treat 90(1):77–84. doi:10.1007/s10549-004-3137-3

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki Y, Ito A, Withers DA, Taima T, Kakoi N, Saito S, Arai Y (2010) Ganglioside DSGb5, preferred ligand for Siglec-7, inhibits NK cell cytotoxicity against renal cell carcinoma cells. Glycobiology 20(11):1373–1379. doi:10.1093/glycob/cwq116

    Article  CAS  PubMed  Google Scholar 

  • Kidder D, Richards HE, Ziltener HJ, Garden OA, Crocker PR (2013) Sialoadhesin ligand expression identifies a subset of CD4 + Foxp3- T cells with a distinct activation and glycosylation profile. J Immunol 190(6):2593–2602. doi:10.4049/jimmunol.1201172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klaas M, Crocker PR (2012) Sialoadhesin in recognition of self and non-self. Semin Immunopathol 34(3):353–364. doi:10.1007/s00281-012-0310-3

    Article  CAS  PubMed  Google Scholar 

  • Klaas M, Oetke C, Lewis LE, Erwig LP, Heikema AP, Easton A, Willison HJ, Crocker PR (2012) Sialoadhesin promotes rapid proinflammatory and type I IFN responses to a sialylated pathogen, Campylobacter jejuni. J Immunol 189(5):2414–2422. doi:10.4049/jimmunol.1200776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kniep B, Kniep E, Ozkucur N, Barz S, Bachmann M, Malisan F, Testi R, Rieber EP (2006) 9-O-acetyl GD3 protects tumor cells from apoptosis. Int J Cancer 119(1):67–73. doi:10.1002/ijc.21788

    Article  CAS  PubMed  Google Scholar 

  • Lopez PH, Schnaar RL (2009) Gangliosides in cell recognition and membrane protein regulation. Curr Opin Struct Biol 19(5):549–557. doi:10.1016/j.sbi.2009.06.001S0959-440X(09)00092-X [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitic N, Milutinovic B, Jankovic M (2012) Assessment of sialic acid diversity in cancer- and non-cancer related CA125 antigen using sialic acid-binding Ig-like lectins (Siglecs). Dis Markers 32(3):187–194. doi:10.3233/DMA-2011-0872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miyazaki K, Ohmori K, Izawa M, Koike T, Kumamoto K, Furukawa K, Ando T, Kiso M, Yamaji T, Hashimoto Y, Suzuki A, Yoshida A, Takeuchi M, Kannagi R (2004) Loss of disialyl Lewis(a), the ligand for lymphocyte inhibitory receptor sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7) associated with increased sialyl Lewis(a) expression on human colon cancers. Cancer Res 64(13):4498–4505. doi:10.1158/0008-5472.CAN-03-3614

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki K, Sakuma K, Kawamura YI, Izawa M, Ohmori K, Mitsuki M, Yamaji T, Hashimoto Y, Suzuki A, Saito Y, Dohi T, Kannagi R (2012) Colonic epithelial cells express specific ligands for mucosal macrophage immunosuppressive receptors siglec-7 and −9. J Immunol 188(9):4690–4700. doi:10.4049/jimmunol.1100605

    Article  CAS  PubMed  Google Scholar 

  • Nath D, Hartnell A, Happerfield L, Miles DW, Burchell J, Taylor-Papadimitriou J, Crocker PR (1999) Macrophage-tumour cell interactions: identification of MUC1 on breast cancer cells as a potential counter-receptor for the macrophage-restricted receptor, sialoadhesin. Immunology 98(2):213–219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicoll G, Avril T, Lock K, Furukawa K, Bovin N, Crocker PR (2003) Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms. Eur J Immunol 33(6):1642–1648. doi:10.1002/eji.200323693

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi K, Komohara Y, Saito Y, Miyamoto Y, Watanabe M, Baba H, Takeya M (2013) CD169-positive macrophages in regional lymph nodes are associated with a favorable prognosis in patients with colorectal carcinoma. Cancer Sci 104(9):1237–1244. doi:10.1111/cas.12212

    Article  CAS  PubMed  Google Scholar 

  • Ohta M, Ishida A, Toda M, Akita K, Inoue M, Yamashita K, Watanabe M, Murata T, Usui T, Nakada H (2010) Immunomodulation of monocyte-derived dendritic cells through ligation of tumor-produced mucins to Siglec-9. Biochem Biophys Res Commun 402(4):663–669. doi:10.1016/j.bbrc.2010.10.079

    Article  CAS  PubMed  Google Scholar 

  • Oliva JP, Valdes Z, Casaco A, Pimentel G, Gonzalez J, Alvarez I, Osorio M, Velazco M, Figueroa M, Ortiz R, Escobar X, Orozco M, Cruz J, Franco S, Diaz M, Roque L, Carr A, Vazquez AM, Mateos C, Rubio MC, Perez R, Fernandez LE (2006) Clinical evidences of GM3 (NeuGc) ganglioside expression in human breast cancer using the 14F7 monoclonal antibody labelled with (99m)Tc. Breast Cancer Res Treat 96(2):115–121. doi:10.1007/s10549-005-9064-0

    Article  CAS  PubMed  Google Scholar 

  • Padler-Karavani V (2013) Aiming at the sweet side of cancer: aberrant glycosylation as possible target for personalized-medicine. Cancer Lett. doi:10.1016/j.canlet.2013.10.005

    PubMed  Google Scholar 

  • Park JJ, Lee M (2013) Increasing the alpha 2, 6 sialylation of glycoproteins may contribute to metastatic spread and therapeutic resistance in colorectal cancer. Gut Liver 7(6):629–641. doi:10.5009/gnl.2013.7.6.629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rabinovich GA, Croci DO (2012) Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer. Immunity 36(3):322–335. doi:10.1016/j.immuni.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  • Richards DM, Hettinger J, Feuerer M (2013) Monocytes and macrophages in cancer: development and functions. Cancer Microenviron 6(2):179–191. doi:10.1007/s12307-012-0123-x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sabit I, Hashimoto N, Matsumoto Y, Yamaji T, Furukawa K (2013) Binding of a sialic acid-recognizing lectin Siglec-9 modulates adhesion dynamics of cancer cells via calpain-mediated protein degradation. J Biol Chem 288(49):35417–35427. doi:10.1074/jbc.M113.513192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saunderson SC, Dunn AC, Crocker PR, McLellan AD (2014) CD169 mediates the capture of exosomes in spleen and lymph node. Blood 123(2):208–216. doi:10.1182/blood-2013-03-489732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seales EC, Jurado GA, Singhal A, Bellis SL (2003) Ras oncogene directs expression of a differentially sialylated, functionally altered beta1 integrin. Oncogene 22(46):7137–7145. doi:10.1038/sj.onc.12068341206834 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Seales EC, Jurado GA, Brunson BA, Wakefield JK, Frost AR, Bellis SL (2005) Hypersialylation of beta1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. Cancer Res 65(11):4645–4652. doi:10.1158/0008-5472.CAN-04-3117, 65/11/4645 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Kohla G, Lrhorfi AL, Sipos B, Kalthoff H, Gerwig GJ, Kamerling JP, Schauer R, Tiralongo J (2004) O-acetylation and de-O-acetylation of sialic acids in human colorectal carcinoma. Eur J Biochem 271(2):281–290

    Article  CAS  PubMed  Google Scholar 

  • Takamiya R, Ohtsubo K, Takamatsu S, Taniguchi N, Angata T (2013) The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-beta secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology 23(2):178–187. doi:10.1093/glycob/cws139

    Article  CAS  PubMed  Google Scholar 

  • Tanida S, Akita K, Ishida A, Mori Y, Toda M, Inoue M, Ohta M, Yashiro M, Sawada T, Hirakawa K, Nakada H (2013) Binding of the sialic acid-binding lectin, Siglec-9, to the membrane mucin, MUC1, induces recruitment of beta-catenin and subsequent cell growth. J Biol Chem 288(44):31842–31852. doi:10.1074/jbc.M113.471318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toda M, Akita K, Inoue M, Taketani S, Nakada H (2008) Down-modulation of B cell signal transduction by ligation of mucins to CD22. Biochem Biophys Res Commun 372(1):45–50. doi:10.1016/j.bbrc.2008.04.175

    Article  CAS  PubMed  Google Scholar 

  • Toda M, Hisano R, Yurugi H, Akita K, Maruyama K, Inoue M, Adachi T, Tsubata T, Nakada H (2009) Ligation of tumour-produced mucins to CD22 dramatically impairs splenic marginal zone B-cells. Biochem J 417(3):673–683. doi:10.1042/BJ20081241

    Article  CAS  PubMed  Google Scholar 

  • Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3(2):97–130

    Article  CAS  PubMed  Google Scholar 

  • Varki A, Schauer R et al (2009) Sialic acids. In: Varki A, Cummings RD, Esko JD (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor, New York

    Google Scholar 

  • Yang JM, Byrd JC, Siddiki BB, Chung YS, Okuno M, Sowa M, Kim YS, Matta KL, Brockhausen I (1994) Alterations of O-glycan biosynthesis in human colon cancer tissues. Glycobiology 4(6):873–884

    Article  CAS  PubMed  Google Scholar 

  • Yu RK, Tsai YT, Ariga T, Yanagisawa M (2011) Structures, biosynthesis, and functions of gangliosides--an overview. J Oleo Sci 60(10):537–544, doi:JST.JSTAGE/jos/60.537 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Crocker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Mohan, B., Crocker, P.R. (2016). Sialylation and Immune Surveillance of Cancer by Siglecs. In: Furukawa, K., Fukuda, M. (eds) Glycosignals in Cancer: Mechanisms of Malignant Phenotypes . Springer, Tokyo. https://doi.org/10.1007/978-4-431-55939-9_8

Download citation

Publish with us

Policies and ethics