Skip to main content

Control of Chronic Inflammation Through Elucidation of Organ-Specific Autoimmune Disease Mechanisms

  • Chapter
  • First Online:
Chronic Inflammation
  • 1966 Accesses

Abstract

Our body is equipped with an immune system that normally distinguishes between microorganisms (non-self) and components of our body (self), thereby protecting us from the invasion by many pathogens. However, intractable autoimmune disease, in which somehow our immune system attacks our own body, could develop by unknown mechanisms. With aiming toward novel therapeutic approaches to chronic inflammation caused by autoimmunity, we are studying the mechanisms underlying the development of organ-specific autoimmune diseases caused by the abnormal function of antigen-presenting cells in the thymus. We are particularly interested in how the immunological self is presented to developing thymocytes to establish the self-tolerance within the thymic microenvironment. NF-κB activation pathway in medullary thymic epithelial cells (mTECs) and Aire in mTECs, a transcription factor which is responsible for the development of rather rare hereditary type of autoimmune disease, are the main focus of our research, hoping that manipulations of those factors could control the chronic inflammation observed in many organ-specific autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D (2002) Projection of an immunological self shadow within the thymus by the Aire protein. Science 298:1395–1401

    Article  CAS  PubMed  Google Scholar 

  • Anderson MS, Venanzi ES, Chen Z, Berzins SP, Benoist C, Mathis D (2005) The cellular mechanism of Aire control of T cell tolerance. Immunity 23:227–239

    Article  CAS  PubMed  Google Scholar 

  • Brannstrom J, Hassler S, Peltonen L, Herrmann B, Winqvist O (2006) Defect internalization and tyrosine kinase activation in Aire deficient antigen presenting cells exposed to Candida albicans antigens. Clin Immunol 121:265–273

    Article  PubMed  Google Scholar 

  • Dooley J, Erickson M, Farr AG (2008) Alterations of the medullary epithelial compartment in the Aire-deficient thymus: implications for programs of thymic epithelial differentiation. J Immunol 181:5225–5232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dresch C, Leverrier Y, Marvel J, Shortman K (2012) Development of antigen cross-presentation capacity in dendritic cells. Trends Immunol 33:381–388

    Article  CAS  PubMed  Google Scholar 

  • Elewaut D, Shaikh RB, Hammond KJ, De Winter H, Leishman AJ, Sidobre S, Turovskaya O, Prigozy TI, Ma L, Banks TA, Lo D, Ware CF, Cheroutre H, Kronenberg M (2003) NIK-dependent RelB activation defines a unique signaling pathway for the development of V alpha 14i NKT cells. J Exp Med 197:1623–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott JF, Liu J, Yuan ZN, Bautista-Lopez N, Wallbank SL, Suzuki K, Rayner D, Nation P, Robertson MA, Liu G, Kavanagh KM (2003) Autoimmune cardiomyopathy and heart block develop spontaneously in HLA-DQ8 transgenic IAβ knockout NOD mice. Proc Natl Acad Sci U S A 100:13447–13452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallegos AM, Bevan MJ (2004) Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J Exp Med 200:1039–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner JM, Devoss JJ, Friedman RS, Wong DJ, Tan YX, Zhou X, Johannes KP, Su MA, Chang HY, Krummel MF, Anderson MS (2008) Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 321:843–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner JM, Fletcher AL, Anderson MS, Turley SJ (2009) AIRE in the thymus and beyond. Curr Opin Immunol 21:582–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner JM, Metzger TC, McMahon EJ, Au-Yeung BB, Krawisz AK, Lu W, Price JD, Johannes KP, Satpathy AT, Murphy KM, Tarbell KV, Weiss A, Anderson MS (2013) Extrathymic Aire-expressing cells are a distinct bone marrow-derived population that induce functional inactivation of CD4(+) T cells. Immunity 39:560–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillard GO, Dooley J, Erickson M, Peltonen L, Farr AG (2007) Aire-dependent alterations in medullary thymic epithelium indicate a role for Aire in thymic epithelial differentiation. J Immunol 178:3007–3015

    Article  CAS  PubMed  Google Scholar 

  • Gray D, Abramson J, Benoist C, Mathis D (2007) Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. J Exp Med 204:2521–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayward SL, Bautista-Lopez N, Suzuki K, Atrazhev A, Dickie P, Elliott JF (2006) CD4 T cells play major effector role and CD8 T cells initiating role in spontaneous autoimmune myocarditis of HLA-DQ8 transgenic IAb knockout nonobese diabetic mice. J Immunol 176:7715–7725

    Article  CAS  PubMed  Google Scholar 

  • Hofmann J, Mair F, Greter M, Schmidt-Supprian M, Becher B (2011) NIK signaling in dendritic cells but not in T cells is required for the development of effector T cells and cell-mediated immune responses. J Exp Med 208:1917–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajiura F, Sun S, Nomura T, Izumi K, Ueno T, Bando Y, Kuroda N, Han H, Li Y, Matsushima A, Takahama Y, Sakaguchi S, Mitani T, Matsumoto M (2004) NF-κB-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J Immunol 172:2067–2075

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto H, Sprent J (2001) A defect in central tolerance in NOD mice. Nat Immunol 2:1025–1031

    Article  CAS  PubMed  Google Scholar 

  • Klein L, Kyewski B, Allen PM, Hogquist KA (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol 14:377–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koike R, Nishimura T, Yasumizu R, Tanaka H, Hataba Y, Hataba Y, Watanabe T, Miyawaki S, Miyasaka M (1996) The splenic marginal zone is absent in alymphoplastic aly mutant mice. Eur J Immunol 26:669–675

    Article  CAS  PubMed  Google Scholar 

  • Kuroda N, Mitani T, Takeda N, Ishimaru N, Arakaki R, Hayashi Y, Bando Y, Izumi K, Takahashi T, Nomura T, Sakaguchi S, Ueno T, Takahama Y, Uchida D, Sun S, Kajiura F, Mouri Y, Han H, Matsushima A, Yamada G, Matsumoto M (2005) Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of Aire-deficient mice. J Immunol 174:1862–1870

    Article  CAS  PubMed  Google Scholar 

  • Kyewski B, Klein L (2006) A central role for central tolerance. Annu Rev Immunol 24:571–606

    Article  CAS  PubMed  Google Scholar 

  • Ling L, Cao Z, Goeddel DV (1998) NF-κB-inducing kinase activates IKK-α by phosphorylation of Ser-176. Proc Natl Acad Sci U S A 95:3792–3797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC (2003) Aire regulates negative selection of organ-specific T cells. Nat Immunol 4:350–354

    Article  CAS  PubMed  Google Scholar 

  • Maeda Y, Nishikawa H, Sugiyama D, Ha D, Hamaguchi M, Saito T, Nishioka M, Wing JB, Adeegbe D, Katayama I, Sakaguchi S (2014) Detection of self-reactive CD8(+) T cells with an anergic phenotype in healthy individuals. Science 346:1536–1540

    Article  CAS  PubMed  Google Scholar 

  • Malinin NL, Boldin MP, Kovalenko AV, Wallach D (1997) MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature 385:540–544

    Article  CAS  PubMed  Google Scholar 

  • Mathis D, Benoist C (2009) Aire. Annu Rev Immunol 27:287–312

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M (2007) Transcriptional regulation in thymic epithelial cells for the establishment of self tolerance. Arch Immunol Ther Exp (Warsz) 55:27–34

    Article  CAS  Google Scholar 

  • Matsumoto M (2009) The role of autoimmune regulator (Aire) in the development of the immune system. Microbes Infect 11:928–934

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M (2011) Contrasting models for the roles of Aire in the differentiation program of epithelial cells in the thymic medulla. Eur J Immunol 41:12–17

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Fu YX, Molina H, Chaplin DD (1997) Lymphotoxin-α-deficient and TNF receptor-I-deficient mice define developmental and functional characteristics of germinal centers. Immunol Rev 156:137–144

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Iwamasa K, Rennert PD, Yamada T, Suzuki R, Matsushima A, Okabe M, Fujita S, Yokoyama M (1999) Involvement of distinct cellular compartments in the abnormal lymphoid organogenesis in lymphotoxin-α-deficient mice and alymphoplasia (aly) mice defined by the chimeric analysis. J Immunol 163:1584–1591

    CAS  PubMed  Google Scholar 

  • Matsumoto M, Yamada T, Yoshinaga SK, Boone T, Horan T, Fujita S, Li Y, Mitani T (2002) Essential role of NF-κB-inducing kinase in T cell activation through the TCR/CD3 pathway. J Immunol 169:1151–1158

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Nishikawa Y, Nishijima H, Morimoto J, Matsumoto M, Mouri Y (2013) Which model better fits the role of aire in the establishment of self-tolerance: the transcription model or the maturation model? Front Immunol 4:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushima A, Kaisho T, Rennert PD, Nakano H, Kurosawa K, Uchida D, Takeda K, Akira S, Matsumoto M (2001) Essential role of nuclear factor (NF)-κB-inducing kinase and inhibitor of κB (IκB) kinase alpha in NF-κB activation through lymphotoxin beta receptor, but not through tumor necrosis factor receptor I. J Exp Med 193:631–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger TC, Anderson MS (2011) Control of central and peripheral tolerance by Aire. Immunol Rev 241:89–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mingueneau M, Jiang W, Feuerer M, Mathis D, Benoist C (2012) Thymic negative selection is functional in NOD mice. J Exp Med 209:623–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyawaki S, Nakamura Y, Suzuka H, Koba M, Yasumizu R, Ikehara S, Shibata Y (1994) A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice. Eur J Immunol 24:429–434

    Article  CAS  PubMed  Google Scholar 

  • Mouri Y, Nishijima H, Kawano H, Hirota F, Sakaguchi N, Morimoto J, Matsumoto M (2014) NF-κB-inducing kinase in thymic stroma establishes central tolerance by orchestrating cross-talk with not only thymocytes but also dendritic cells. J Immunol 193:4356–4367

    Article  CAS  PubMed  Google Scholar 

  • Nakayama M, Abiru N, Moriyama H, Babaya N, Liu E, Miao D, Yu L, Wegmann DR, Hutton JC, Elliott JF, Eisenbarth GS (2005) Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435:220–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikawa Y, Hirota F, Yano M, Kitajima H, Miyazaki J, Kawamoto H, Mouri Y, Matsumoto M (2010) Biphasic Aire expression in early embryos and in medullary thymic epithelial cells before end-stage terminal differentiation. J Exp Med 207:963–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parent AV, Russ HA, Khan IS, LaFlam TN, Metzger TC, Anderson MS, Hebrok M (2013) Generation of functional thymic epithelium from human embryonic stem cells that supports host T cell development. Cell Stem Cell 13:219–229

    Article  CAS  PubMed  Google Scholar 

  • Ryan KR, Hong M, Arkwright PD, Gennery AR, Costigan C, Dominguez M, Denning D, McConnell V, Cant AJ, Abinun M, Spickett GP, Lilic D (2008) Impaired dendritic cell maturation and cytokine production in patients with chronic mucocutanous candidiasis with or without APECED. Clin Exp Immunol 154:406–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinkura R, Matsuda F, Sakiyama T, Tsubata T, Hiai H, Paumen M, Miyawaki S, Honjo T (1996) Defects of somatic hypermutation and class switching in alymphoplasia (aly) mutant mice. Int Immunol 8:1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Shinkura R, Kitada K, Matsuda F, Tashiro K, Ikuta K, Suzuki M, Kogishi K, Serikawa T, Honjo T (1999) Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-κ b-inducing kinase. Nat Genet 22:74–77

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Xu J, Lu H, Liu W, Miao Z, Sui X, Liu H, Su L, Du W, He Q, Chen F, Shi Y, Deng H (2013) Directed differentiation of human embryonic stem cells into thymic epithelial progenitor-like cells reconstitutes the thymic microenvironment in vivo. Cell Stem Cell 13:230–236

    Article  CAS  PubMed  Google Scholar 

  • Tamura C, Nakazawa M, Kasahara M, Hotta C, Yoshinari M, Sato F, Minami M (2006) Impaired function of dendritic cells in alymphoplasia (aly/aly) mice for expansion of CD25 + CD4+ regulatory T cells. Autoimmunity 39:445–453

    Article  CAS  PubMed  Google Scholar 

  • Taylor JA, Havari E, McInerney MF, Bronson R, Wucherpfennig KW, Lipes MA (2004) A spontaneous model for autoimmune myocarditis using the human MHC molecule HLA-DQ8. J Immunol 172:2651–2658

    Article  CAS  PubMed  Google Scholar 

  • van Ewijk W, Shores EW, Singer A (1994) Crosstalk in the mouse thymus. Immunol Today 15:214–217

    Article  PubMed  Google Scholar 

  • Venalis P, Lundberg IE (2014) Immune mechanisms in polymyositis and dermatomyositis and potential targets for therapy. Rheumatology 53:397–405

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Mitani T, Yorita K, Uchida D, Matsushima A, Iwamasa K, Fujita S, Matsumoto M (2000) Abnormal immune function of hemopoietic cells from alymphoplasia (aly) mice, a natural strain with mutant NF-κB-inducing kinase. J Immunol 165:804–812

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D (2015) Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348:589–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano M, Kuroda N, Han H, Meguro-Horike M, Nishikawa Y, Kiyonari H, Maemura K, Yanagawa Y, Obata K, Takahashi S, Ikawa T, Satoh R, Kawamoto H, Mouri Y, Matsumoto M (2008) Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. J Exp Med 205:2827–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W, Jiang N, Ebert PJ, Kidd BA, Muller S, Lund PJ, Juang J, Adachi K, Tse T, Birnbaum ME, Newell EW, Wilson DM, Grotenbreg GM, Valitutti S, Quake SR, Davis MM (2015) Clonal deletion prunes but does not eliminate self-specific αβ CD8(+) T lymphocytes. Immunity 42:929–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuru Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Matsumoto, M. (2016). Control of Chronic Inflammation Through Elucidation of Organ-Specific Autoimmune Disease Mechanisms. In: Miyasaka, M., Takatsu, K. (eds) Chronic Inflammation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56068-5_37

Download citation

Publish with us

Policies and ethics