Skip to main content

Aspartate Racemase: Function, Structure, and Reaction Mechanism

  • Chapter
  • First Online:
D-Amino Acids
  • 898 Accesses

Abstract

Aspartate racemases distribute and function to produce d-aspartate in eubacteria, archaea, invertebrates, and vertebrates. The aspartate racemases of eubacteria and hyperthermophilic archaea are pyridoxal 5′-phosphate (PLP) independent, and two conserved cysteine residues constitute the catalytic center. The crystal structure of the aspartate racemase of hyperthermophilic archaeon was determined. Based on this structure, the detailed reaction mechanism of the pyridoxal 5′-phosphate-independent aspartate racemase was studied by characterizing mutants and molecular dynamics simulations. However, it is still unclear how the catalytic cysteine residue can abstract a proton from the α-carbon. The aspartate in hyperthermophilic archaea is highly racemized, but the physiological role of aspartate racemase and d-aspartate in hyperthermophilic archaea is unknown. The aspartate racemases in invertebrates and vertebrates are PLP dependent. The aspartate racemases from invertebrates, bivalves, and Aplysia californica are homologous to serine racemases, but it has taken many years to identify the aspartate racemase responsible for the synthesis of d-Asp in mammals due to the lack of other amino acid racemases. The gene for the mammalian aspartate racemase was obtained via its homology with glutamate-oxaloacetate transaminase. Further studies on aspartate racemase will promote research on the mysterious functions of d-Asp in various organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Takahashi S, Muroki Y, Kera Y, Yamada RH (2006) Cloning and expression of the pyridoxal 5′-phosphate-dependent aspartate racemase gene from the bivalve mollusk Scapharca broughtonii and characterization of the recombinant enzyme. J Biochem 139(2):235–244. doi:10.1093/jb/mvj028

    Article  CAS  PubMed  Google Scholar 

  • Johnston MM, Diven WF (1969) Studies on amino acid racemases. I. Partial purification and properties of the alanine racemase from Lactobacillus fermenti. J Biol Chem 244(19):5414–5420

    CAS  PubMed  Google Scholar 

  • Kim PM, Duan X, Huang AS, Liu CY, Ming GL, Song H, Snyder SH (2010) Aspartate racemase, generating neuronal d-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci U S A 107(7):3175–3179. doi:10.1073/pnas.0914706107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamont HC, Staudenbauer WL, Strominger JL (1972) Partial purification and characterization of an aspartate racemase from Streptococcus faecalis. J Biol Chem 247(16):5103–5106

    CAS  PubMed  Google Scholar 

  • Liu L, Iwata K, Kita A, Kawarabayasi Y, Yohda M, Miki K (2002a) Crystal structure of aspartate racemase from Pyrococcus horikoshii OT3 and its implications for molecular mechanism of PLP-independent racemization. J Mol Biol 319(2):479–489. doi:10.1016/s0022-2836(02)00296-6

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Iwata K, Yohda M, Miki K (2002b) Structural insight into gene duplication, gene fusion and domain swapping in the evolution of PLP-independent amino acid racemases. FEBS Lett 528(1–3):114–118

    Article  CAS  PubMed  Google Scholar 

  • Long Z, Lee JA, Okamoto T, Sekine M, Nimura N, Imai K, Yohda M, Maruyama T, Sumi M, Kamo N, Yamagishi A, Oshima T, Homma H (2001) Occurrence of d-amino acids and a pyridoxal 5′-phosphate-dependent aspartate racemase in the acidothermophilic archaeon, Thermoplasma acidophilum. Biochem Biophys Res Commun 281(2):317–321. doi:10.1006/bbrc.2001.4353

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Homma H, Long Z, Imai K, Iida T, Maruyama T, Aikawa Y, Endo I, Yohda M (1999) Occurrence of free d-amino acids and aspartate racemases in hyperthermophilic archaea. J Bacteriol 181(20):6560–6563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagata Y, Fujiwara T, Kawaguchi-Nagata K, Fukumori Y, Yamanaka T (1998) Occurrence of peptidyl d-amino acids in soluble fractions of several eubacteria, archaea and eukaryotes. Biochim Biophys Acta 1379(1):76–82

    Article  CAS  PubMed  Google Scholar 

  • Ohtaki A, Nakano Y, Iizuka R, Arakawa T, Yamada K, Odaka M, Yohda M (2008) Structure of aspartate racemase complexed with a dual substrate analogue, citric acid, and implications for the reaction mechanism. Proteins 70(4):1167–1174. doi:10.1002/prot.21528

    Article  CAS  PubMed  Google Scholar 

  • Okada H, Yohda M, Giga-Hama Y, Ueno Y, Ohdo S, Kumagai H (1991) Distribution and purification of aspartate racemase in lactic acid bacteria. Biochim Biophys Acta 1078(3):377–382

    Article  CAS  PubMed  Google Scholar 

  • Shibata K, Watanabe T, Yoshikawa H, Abe K, Takahashi S, Kera Y, Yamada R-h (2003a) Nucleotides modulate the activity of aspartate racemase of Scapharca broughtonii. Comp Biochem Physiol B Biochem Mol Biol 134(4):713–719. doi:10.1016/s1096-4959(03)00031-9

    Article  PubMed  Google Scholar 

  • Shibata K, Watanabe T, Yoshikawa H, Abe K, Takahashi S, Kera Y, Yamada RH (2003b) Purification and characterization of aspartate racemase from the bivalve mollusk Scapharca broughtonii. Comp Biochem Physiol B Biochem Mol Biol 134(2):307–314

    Article  PubMed  Google Scholar 

  • Staudenbauer W, Strominger JL (1972) Activation of d-aspartic acid for incorporation into peptidoglycan. J Biol Chem 247(16):5095–5102

    CAS  PubMed  Google Scholar 

  • Wang L, Ota N, Romanova EV, Sweedler JV (2011) A novel pyridoxal 5′-phosphate-dependent amino acid racemase in the Aplysia californica central nervous system. J Biol Chem 286(15):13765–13774. doi:10.1074/jbc.M110.178228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada RH, Kera Y, Takahashi S (2006) Occurrence and functions of free d-aspartate and its metabolizing enzymes. Chem Rec 6(5):259–266. doi:10.1002/tcr.20089

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Choi SY, Okada H, Yohda M, Kumagai H, Esaki N, Soda K (1992) Properties of aspartate racemase, a pyridoxal 5′-phosphate-independent amino acid racemase. J Biol Chem 267(26):18361–18364

    CAS  PubMed  Google Scholar 

  • Yohda M, Okada H, Kumagai H (1991) Molecular cloning and nucleotide sequencing of the aspartate racemase gene from lactic acid bacteria Streptococcus thermophilus. Biochim Biophys Acta 1089(2):234–240

    Article  CAS  PubMed  Google Scholar 

  • Yohda M, Endo I, Abe Y, Ohta T, Iida T, Maruyama T, Kagawa Y (1996) Gene for aspartate racemase from the sulfur-dependent hyperthermophilic archaeum, Desulfurococcus strain SY. J Biol Chem 271(36):22017–22021

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Seko T, Okada O, Iwata K, Liu L, Miki K, Yohda M (2006) Roles of conserved basic amino acid residues and activation mechanism of the hyperthermophilic aspartate racemase at high temperature. Proteins 64(2):502–512. doi:10.1002/prot.21010

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Yohda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Yohda, M. (2016). Aspartate Racemase: Function, Structure, and Reaction Mechanism. In: Yoshimura, T., Nishikawa, T., Homma, H. (eds) D-Amino Acids. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56077-7_21

Download citation

Publish with us

Policies and ethics