Skip to main content

Optical Recording Methods: How to Measure Neural Activities with Calcium Imaging

  • Chapter
  • First Online:
The Cricket as a Model Organism
  • 1147 Accesses

Abstract

Optical recording that provides both anatomical and physiological data has become an essential research technique for neuroscience studies. In particular, Ca2+ imaging is one of the most popular and useful methods for monitoring local activity at subcellular regions of single neurons and/or visualization of spatiotemporal dynamics of neuronal population activity. In neuroethological studies on the cricket, the Ca2+ imaging is also a powerful method for optical recording of neural activity and has yielded important information on neural mechanisms in the cricket. In this chapter, we summarize some important features for the application of Ca2+ imaging in the cricket nervous system. This includes the selection of an appropriate Ca2+ indicator and the dye loading protocols, experimental designs, and optical system configurations that are required to enable the effective use of the Ca2+ imaging techniques in the cricket. As an example application, we focused on Ca2+ imaging experiments in the cricket cercal sensory system in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacon JP, Murphey RK (1984) Receptive fields of cricket (Acheta domesticus) are determined by their dendritic structure. J Physiol Lond 352:601–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baden T, Hedwig B (2007) Neurite-specific Ca2+ dynamics underlying sound processing in an auditory interneurone. Dev Neurobiol 67:68–80

    Article  CAS  PubMed  Google Scholar 

  • Baden T, Hedwig B (2009) Dynamics of free intracellular Ca2+ during synaptic and spike activity of cricket tibial motoneurons. Eur J Neurosci 29:1357–1368

    Article  PubMed  Google Scholar 

  • Chen X, Leischner U, Rochefort NL, Nelken I, Konnerth A (2011) Functional mapping of single spines in cortical neurons in vivo. Nature 475:501–505

    Article  CAS  PubMed  Google Scholar 

  • Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73:862–885

    Article  CAS  PubMed  Google Scholar 

  • Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    Article  CAS  PubMed  Google Scholar 

  • Jacobs GA, Theunissen F (1996) Functional organization of a neural map in the cricket cercal sensory system. J Neurosci 16:769–784

    CAS  PubMed  Google Scholar 

  • Jacobs GA, Theunissen F (2000) Extraction of sensory parameters from a neural map by primary sensory interneurons. J Neurosci 20:2934–2943

    CAS  PubMed  Google Scholar 

  • Jacobs GA, Miller JP, Murphey RK (1986) Cellular mechanisms underlying directional sensitivity of an identified sensory interneuron. J Neurosci 6:2298–2311

    CAS  PubMed  Google Scholar 

  • Kloppenburg P, Hörner M (1998) Voltage-activated currents in identified giant interneurons isolated from adult crickets gryllus bimaculatus. J Exp Biol 201:2529–2541

    CAS  PubMed  Google Scholar 

  • Landolfa MA, Miller JP (1995) Stimulus-response properties of cricket cercal filiform receptors. J Comp Physiol A 177:749–757

    Google Scholar 

  • Lipp P, Niggli E (1993) Ratiometric confocal Ca2+-measurements with visible wavelength indicators in isolated cardiac myocytes. Cell Calcium 14:339–372

    Article  Google Scholar 

  • Matsumoto CS, Shidara H, Matsuda K, Nakamura T, Mito T, Matsumoto Y, Oka K, Ogawa H (2013) Targeted gene delivery in the cricket brain, using in vivo electroporation. J Insect Physiol 59:1235–1241

    Article  CAS  PubMed  Google Scholar 

  • Miller JP, Jacobs GA, Theunissen FE (1991) Representation of sensory information in the cricket cercal sensory system. I. Response properties of the primary interneurons. J Neurophysiol 66:1680–1689

    CAS  PubMed  Google Scholar 

  • Miller JP, Krueger S, Heys J, Gedeon T (2011) Quantitative characterization of the filiform mechanosensory hair array on the cricket cercus. PLoS One 6(11):e27873. doi:10.1371/journal.pone.0027873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 101:10554–10559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141

    Article  CAS  PubMed  Google Scholar 

  • Nemoto T (2008) Living cell functions and morphology revealed by two-photon microscopy in intact neural and secretory organs. Mol Cell 26:113–120

    CAS  Google Scholar 

  • Ogawa H, Kajita Y (2015) Ca2+ imaging of cricket protocerebrum responses to air current stimulation. Neurosci Lett 584:282–286

    Google Scholar 

  • Ogawa H, Miller JP (2013) In vivo Ca2+ imaging of neuronal activity. In: Ogawa H, Oka K (eds) Methods in neuroethological research. Springer Japan, Tokyo, pp 71–87

    Chapter  Google Scholar 

  • Ogawa H, Baba Y, Oka K (1999) Dendritic Ca2+ transient increase evoked by wind stimulus in the cricket giant interneuron. Neurosci Lett 275:61–64

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Baba Y, Oka K (2000) Spike-dependent calcium influx in dendrites of the cricket giant interneuron. J Neurobiol 44:45–56

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Baba Y, Oka K (2001) Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneuron synapses in the cricket. J Neurobiol 46:301–313

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Baba Y, Oka K (2002a) Spike-triggered dendritic calcium transients depend on synaptic activity in the cricket giant interneurons. J Neurobiol 50:234–244

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Baba Y, Oka K (2002b) Direction of action potential propagation influences calcium increases in distal dendrites of the cricket giant interneurons. J Neurobiol 53:44–56

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Baba Y, Oka K (2004) Directional sensitivity of dendritic calcium responses to wind stimuli in the cricket giant interneuron. Neurosci Lett 358:185–188

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Cummins GI, Jacobs GA, Miller JP (2006) Visualization of ensemble activity patterns of mechanosensory afferents in the cricket cercal sensory system with calcium imaging. J Neurobiol 66:293–307

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Cummins GI, Jacobs GA, Oka K (2008) Dendritic design implements algorithm for extraction of sensory information. J Neurosci 28:4592–4603

    Article  CAS  PubMed  Google Scholar 

  • Palka J, Levine R, Schubiger M (1977) The cercus-to-giant interneuron system of crickets. I. Some aspects of the sensory cells. J Comp Physiol 119:267–283

    Article  Google Scholar 

  • Paydar S, Doan CA, Jacobs GA (1999) Neural mapping of direction and frequency in the cricket cercal sensory system. J Neurosci 19:1771–1781

    CAS  PubMed  Google Scholar 

  • Sobel EC, Tank DW (1994) In vivo Ca2+ dynamics in a cricket auditory neuron: an example of chemical computation. Science 263:823–826

    Article  CAS  PubMed  Google Scholar 

  • Speier S, Nyqvist D, Cabrera O, Yu J, Molano RD, Pileggi A, Moede T, Köhler M, Wilbertz J, Leibiger B, Ricordi C, Leibiger IB, Caicedo A, Berggren P (2008) Noninvasive in vivo imaging of pancreatic islet cell biology. Nat Med 14:574–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839

    Article  CAS  PubMed  Google Scholar 

  • Takahara Y, Matsuki N, Ikegaya Y (2011) Nipkow confocal imaging from deep brain tissues. J Integr Neurosci 10:121–129

    Article  PubMed  Google Scholar 

  • Theunissen F, Roddey JC, Stufflebeam S, Clague H, Miller JP (1996) Information theoretic analysis of dynamical encoding by four primary sensory interneurons in the cricket cercal system. J Neurophysiol 75:1345–1376

    CAS  PubMed  Google Scholar 

  • Troyer TW, Levin JE, Jacobs GA (1994) Construction and analysis of a data base representing a neural map. Microsc Res Tech 29:329–343

    Article  CAS  PubMed  Google Scholar 

  • Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroto Ogawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Ogawa, H., Miller, J.P. (2017). Optical Recording Methods: How to Measure Neural Activities with Calcium Imaging. In: Horch, H., Mito, T., Popadić, A., Ohuchi, H., Noji, S. (eds) The Cricket as a Model Organism. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56478-2_18

Download citation

Publish with us

Policies and ethics