Skip to main content

Turn-On Mode Fluorescent Diarylethenes

  • Chapter
  • First Online:
Photon-Working Switches

Abstract

Turn-on mode highly fluorescent photochromic chromophores, which are initially non-luminous under irradiation with visible light but activated to emit fluorescence upon irradiation with UV light, have been developed. The chromophores are sulfone derivatives of 1,2-bis(2-alkyl-1-benzothiophen-3-yl)perfluorocyclopentene. The open-ring isomers undergo photocyclization reactions to produce the fluorescent closed-ring isomers upon UV irradiation. The fluorescent property of the closed-ring isomers was dramatically improved by introducing short alkyl chain substituents at 2- and 2′-positions and aryl substituents at 6- and 6′-positions of both benzothiophene-1,1-dioxide groups. The photogenerated closed-ring isomers of 6 having phenyl rings and 10 having thiophene rings emit brilliant green and red-orange fluorescence (Φf = 0.87 (6) and 0.78 (10) in 1,4-dioxane), respectively. Visible-light responsive ability and water solubility, which are indispensable for the application to biological systems, have been provided to the fluorescent photochromic diarylethenes by modifying the central ethene bridge and introducing hydrophilic myo-inositol groups. The photoswitchable fluorescent molecules can be applied to single-molecule tracking in real time as well as to super-resolution fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lakowicz JR (2010) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  2. Moerner WE, Kador L (1989) Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett 62:2535–2538

    Article  CAS  Google Scholar 

  3. Betzig E, Chichester RJ (1993) Single molecules observed by near-field scanning optical microscopy. Science 262:1422–1425

    Article  CAS  Google Scholar 

  4. Rigler R, Oritt M, Basché T (2001) Single molecule spectroscopy. Nobel conference lectures. Springer-Verlag, Berlin

    Google Scholar 

  5. Thomas SW, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386

    Article  CAS  Google Scholar 

  6. Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2012) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112:1910–1956

    Article  CAS  Google Scholar 

  7. Wang XF, Herman B (eds) (1996) Fluorescence imaging spectroscopy and microscopy. John Wiley & Sons, New York

    Google Scholar 

  8. Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306:1370–1373

    Article  CAS  Google Scholar 

  9. Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, Neupane B, Wang G, Li J, Cheng J-X, Huang B, Fang N (2013) Single cell optical imaging and spectroscopy. Chem Rev 113:2469–2527

    Article  CAS  Google Scholar 

  10. Raymo FM (2013) Photoactivatable synthetic fluorophores. Phys Chem Chem Phys 15:14840–14850

    Article  CAS  Google Scholar 

  11. Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T (2002) Organic chemistry: a digital fluorescent molecular photoswitch. Nature 420:759–760

    Article  CAS  Google Scholar 

  12. Fukaminato T, Sasaki T, Kawai T, Tamai N, Irie M (2004) Digital photoswitching of fluorescence based on the photochromism of diarylethene derivatives at a single-molecule level. J Am Chem Soc 126:14843–14849

    Article  CAS  Google Scholar 

  13. Fukaminato T, Umemoto T, Iwata Y, Yokojima S, Yoneyama M, Nakamura S, Irie M (2007) Photochromism of diarylethene single molecules in polymer matrices. J Am Chem Soc 129:5932–5938

    Article  CAS  Google Scholar 

  14. Fukaminato T, Doi T, Tamaoki N, Okuno K, Ishibashi Y, Miyasaka H, Irie M (2011) Single-molecule fluorescence photoswitching of a diarylethene−perylenebisimide dyad: non-destructive fluorescence readout. J Am Chem Soc 133:4984–4990

    Google Scholar 

  15. Fukaminato T, Kobatake S, Kawai T, Irie M (2001) Three-dimensional erasable optical memory using a photochromic diarylethene single crystal as the recording medium. Proc Jpn Acad, Ser B 77:30–35

    Article  Google Scholar 

  16. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  Google Scholar 

  17. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  CAS  Google Scholar 

  18. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Meth 3:793–796

    Article  CAS  Google Scholar 

  19. Sengupta P, van Engelenburg SB, Lippincott-Schwartz J (2014) Superresolution imaging of biological systems using photoactivated localization microscopy. Chem Rev 114:3189–3202

    Article  CAS  Google Scholar 

  20. J-i Hotta, Fron E, Dedecker P, Janssen KPF, Li C, Müllen K, Harke B, Bückers J, Hell SW, Hofkens J (2010) Spectroscopic rationale for efficient stimulated-emission depletion microscopy fluorophores. J Am Chem Soc 132:5021–5023

    Article  Google Scholar 

  21. Yagi K, Soong CF, Irie M (2001) Synthesis of fluorescent diarylethenes having a 2,4,5-triphenylimidazole chromophore. J Org Chem 66:5419–5423

    Article  CAS  Google Scholar 

  22. de Meijere A, Zhao L, Belov VN, Bossi M, Noltemeyer M, Hell SW (2007) 1,3-Bicyclo[1.1.1]pentanediyl: the shortest rigid linear connector of phenylated photochromic units and a 1,5-dimethoxy-9,10-di(phenylethynyl)anthracene fluorophore. Chem Eur J 13:2503–2516

    Article  Google Scholar 

  23. Ohara H, Morimoto M, Irie M (2010) Photochromism of dithienylethene single crystals having anthracene substituents. Photochem Photobiol Sci 9:1079–1081

    Article  CAS  Google Scholar 

  24. Jiang G, Wang S, Yuan W, Jiang L, Song Y, Tian H, Zhu D (2006) Highly fluorescent contrast for rewritable optical storage based on photochromic bisthienylethene-bridged naphthalimide dimer. Chem Mater 18:235–237

    Article  CAS  Google Scholar 

  25. Odo Y, Fukaminato T, Irie M (2007) Photoswitching of fluorescence based on intramolecular electron transfer. Chem Lett 36:240–241

    Article  CAS  Google Scholar 

  26. Berberich M, Krause A-M, Orlandi M, Scandola F, Würthner F (2008) Toward fluorescent memories with nondestructive readout: photoswitching of fluorescence by intramolecular electron transfer in a diaryl ethene-perylene bisimide photochromic system. Angew Chem Int Ed 47:6616–6619

    Article  CAS  Google Scholar 

  27. Pärs M, Hofmann CC, Willinger K, Bauer P, Thelakkat M, Köhler J (2011) An organic optical transistor operated under ambient conditions. Angew Chem Int Ed 50:11405–11408

    Article  Google Scholar 

  28. Golovkova TA, Kozlov DV, Neckers DC (2005) Synthesis and properties of novel fluorescent switches. J Org Chem 70:5545–5549

    Article  CAS  Google Scholar 

  29. Lord SJ, Conley NR, Lee HD, Samuel R, Liu N, Twieg RJ, Moerner WE (2008) A photoactivatable push−pull fluorophore for single-molecule imaging in live cells. J Am Chem Soc 130:9204–9205

    Article  CAS  Google Scholar 

  30. Deniz E, Tomasulo M, Cusido J, Yildiz I, Petriella M, Bossi ML, Sortino S, Raymo FM (2012) Photoactivatable fluorophores for super-resolution imaging based on oxazine auxochromes. J Phys Chem C 116:6058–6068

    Article  CAS  Google Scholar 

  31. Kobayashi T, Komatsu T, Kamiya M, Campos C, González-Gaitán M, Terai T, Hanaoka K, Nagano T, Urano Y (2012) Highly activatable and environment-insensitive optical highlighters for selective spatiotemporal imaging of target proteins. J Am Chem Soc 134:11153–11160

    Article  CAS  Google Scholar 

  32. Kobayashi T, Urano Y, Kamiya M, Ueno T, Kojima H, Nagano T (2007) Highly activatable and rapidly releasable caged fluorescein derivatives. J Am Chem Soc 129:6696–6697

    Article  CAS  Google Scholar 

  33. Fölling J, Belov V, Kunetsky R, Medda R, Schönle A, Egner A, Eggeling C, Bossi M, Hell SW (2007) Photochromic rhodamines provide nanoscopy with optical sectioning. Angew Chem Int Ed 46:6266–6270

    Article  Google Scholar 

  34. Thapaliya ER, Captain B, Raymo FM (2014) Photoactivatable anthracenes. J Org Chem 79:3973–3981

    Article  CAS  Google Scholar 

  35. Jeong Y-C, Yang SI, Ahn K-H, Kim E (2005) Highly fluorescent photochromic diarylethene in the closed-ring form. Chem Commun 2503–2505

    Google Scholar 

  36. Jeong Y-C, Yang SI, Kim E, Ahn K-H (2006) Development of highly fluorescent photochromic material with high fatigue resistance. Tetrahedron 62:5855–5861

    Article  CAS  Google Scholar 

  37. Jeong Y-C, Park DG, Lee IS, Yang SI, Ahn K-H (2009) Highly fluorescent photochromic diarylethene with an excellent fatigue property. J Mater Chem 19:97–103

    Article  CAS  Google Scholar 

  38. Uno K, Niikura H, Morimoto M, Ishibashi Y, Miyasaka H, Irie M (2011) In situ preparation of highly fluorescent dyes upon photoirradiation. J Am Chem Soc 133:13558–13564

    Article  CAS  Google Scholar 

  39. Takagi Y, Kunishi T, Katayama T, Ishibashi Y, Miyasaka H, Morimoto M, Irie M (2012) Photoswitchable fluorescent diarylethene derivatives with short alkyl chain substituents. Photochem Photobiol Sci 11:1661–1665

    Article  CAS  Google Scholar 

  40. Sumi T, Kaburagi T, Morimoto M, Une K, Sotome H, Ito S, Miyasaka H, Irie M (2015) Fluorescent photochromic diarylethene that turns on with visible light. Org Lett 17:4802–4805

    Article  CAS  Google Scholar 

  41. Sumi T, Takagi Y, Yagi A, Morimoto M, Irie M (2014) Photoirradiation wavelength dependence of cycloreversion quantum yields of diarylethenes. Chem Commun 50:3928–3930

    Article  CAS  Google Scholar 

  42. Hanazawa M, Sumiya R, Horikawa Y, Irie M (1992) Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis (2-methylbenzo[b]thiophen-3-yl)perfluorocyclocoalkene derivatives. J Chem Soc Chem Commun 206–207

    Google Scholar 

  43. Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100:1685–1716

    Article  CAS  Google Scholar 

  44. Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 114:12174–12277

    Article  CAS  Google Scholar 

  45. Shim S, Joo T, Bae SC, Kim KS, Kim E (2003) Ring opening dynamics of a photochromic diarylethene derivative in solution. J Phys Chem A 107:8106–8110

    Article  CAS  Google Scholar 

  46. Uchida K, Nakayama Y, Irie M (1990) Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis(benzo[b]thiophen-3-yl)ethene derivatives. Bull Chem Soc Jpn 63:1311–1315

    Article  CAS  Google Scholar 

  47. Takeshita M, Irie M (1997) Enhancement of the photocyclization quantum yield of 2,2′-dimethyl-3,3′-(perfluorocyclopentene-1,2-diyl)bis(benzo[b]thiophene-6-sulfonate) by inclusion in a cyclodextrin cavity. Chem Commun 2265–2266

    Google Scholar 

  48. Matsuda K, Shinkai Y, Yamaguchi T, Nomiyama K, Isayama M, Irie M (2003) Very high cyclization quantum yields of diarylethene having two N-methylpyridinium ions. Chem Lett 32:1178–1179

    Article  CAS  Google Scholar 

  49. Díaz SA, Menéndez GO, Etchehon MH, Giordano L, Jovin TM, Jares-Erijman EA (2011) Photoswitchable water-soluble quantum dots: pcFRET based on amphiphilic photochromic polymer coating. ACS Nano 5:2795–2805

    Article  Google Scholar 

  50. Polyakova SM, Belov VN, Bossi ML, Hell SW (2011) Synthesis of photochromic compounds for aqueous solutions and focusable light. Eur J Org Chem 2011:3301–3312

    Article  CAS  Google Scholar 

  51. Shoji Y, Yagi A, Horiuchi M, Morimoto M, Irie M (2013) Photochromic diarylethene derivatives bearing hydrophilic substituents. Isr J Chem 53:303–311

    Article  CAS  Google Scholar 

  52. Takagi Y, Morimoto M, Kashihara R, Fujinami S, Ito S, Miyasaka H, Irie M (2017) Turn-on mode fluorescent diarylethenes: control of the cycloreversion quantum yield. Tetrahedron. doi:10.1016/j.tet.2017.03.040

  53. Nevskyi O, Sysoiev D, Oppermann A, Huhn T, Wöll D (2016) Nanoscopic visualization of soft matter using fluorescent diarylethene photoswitches. Angew Chem Int Ed 55:12698–12702

    Google Scholar 

  54. Roubinet B, Bossi ML, Alt P, Leutenegger M, Shojaei H, Schnorrenberg S, Nizamov S, Irie M, Belov VN, Hell SW (2016) Carboxylated photoswitchable diarylethenes for biolabeling and super-resolution RESOLFT microscopy. Angew Chem Int Ed 55:15429–15433

    Google Scholar 

  55. Arai Y, Ito S, Fujita H, Yoneda Y, Kaji T, Takei S, Kashihara R, Morimoto M, Irie M, Miyasaka H (2017) One-colour of activation, excitation and deactivation of a fluorescent diarylethene derivative in super-resolution microscopy. Chem Commun 53:4066–4069

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Irie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Morimoto, M., Irie, M. (2017). Turn-On Mode Fluorescent Diarylethenes. In: Yokoyama, Y., Nakatani, K. (eds) Photon-Working Switches. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56544-4_5

Download citation

Publish with us

Policies and ethics