Skip to main content

Hard Template-Directed Synthesis

  • Chapter
  • First Online:
Noble Metal Nanoparticles

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Silica is presently widely used as a template for the development of various nanostructures due to its characteristic high surface area, thermal and chemical resistance, the presence of reactive silanol groups (Si–OH), and nanopores. Nontraditional nanostructures consisting of noble metals are often fabricated by depositing thin layers of metals (or their precursors) on some silica beads existing templates. A straightforward sol-gel method can be utilized for the preparation of noble metal nanoparticles and their composites via in situ-doped silica aerogels. The metal dispersion and size distribution obtained by this approach depends on the kind of metal, the reaction conditions, and the metal loading. Another approach consisted of making use of the pore channels of hexagonal mesoporous silica, as matrixes for controlling the nanoparticles size. It was demonstrated that noble metal nanoparticles could be coated with a silica shell via the reaction of citrate-stabilized gold nanoparticles and alkylaminotrimethoxysilane, followed by polymerization after the addition of a sodium silicate solution. The spherical silica nanoparticles were used as the templates of interior cores of metal nanoshells and as the templates for the deposition of the external noble metal shell layer by layer. A controlled growth of silver nanoparticles on TiO2 templates is expected in tuning the optical response of the silver–TiO2 hybrids. The growth model can explain the phenomenon of silver nanoplates lying on the small silver nanoparticles. A simple and reproducible method for the activation of monodispersed silver nanoparticles was insertion of the concentrated NaCl, NaBr, and NaI solution into the silver nanoparticle dispersion. It was also demonstrated the entrapment of thiol-coated gold particles, and believe that the technique is straightforwardly applicable also for other hydrophobically coated nanoparticles. The presence of a substrate influences the resultant frequency and bandwidth of the surface plasmon resonance and more generally its multipole distribution. By combining two different materials or different particle shapes of the same material within the same single nanostructure, new properties of the coupled system can be obtained. An interesting approach to introduce theranostic functionalities into a nanosystem is to covalently attach a metal-porphyrin chelate to mesoporous silica nanoparticles (MSNs) which are readily taken up by cells. Bioconjugates based on MSNs are used in a wide array of applications, including chemical catalysis, drug delivery, controlled release of therapeutics, and cell labeling and killing. UV-photoexcited TiO2 nanoparticles and their conjugates in aqueous solution form various reactive oxygen species, mainly highly reactive hydroxyl (OH), peroxy (HO2) radicals, and singlet oxygen, highly reactive hydroxyl radicals, electrons and superoxide ions able to deactivate of bacteria, algae, viruses and kill cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1D:

One-dimensional

AAS:

Atomic absorption spectrometry

AFM:

Atomic force microscopy

APS:

Aminopropyltrimethoxysilane

APTES:

(aminopropyl)triethoxysilane

APTMS:

Aldehyde propyltrimethoxysilane

Asm:

Aspartame

AuNP:

Gold nanoparticle

AuNR:

Gold nanorod

BDAC:

Benzyldimethylhexadecylammonium chloride

BET:

Brunauer–Emmett–Teller

BJH:

Barrett–Joyner–Halenda

CEA:

Carcinoembryonic antigen

CNS:

Central nervous system

CTAB:

Cetyltrimethylammonium bromide

CTAC:

Cetyltrimethylammonium chloride

CVD:

Chemical vapor deposition

CVs:

Cyclic voltammograms

DA:

Dopamine

DBTA:

Dibenzoyl tartaric acid

DCC:

Dicyclohexylcarbodiimide

DLS:

Dynamic light scattering

DMAP:

Dimethylamino pyridine

DNA:

Deoxyribonucleic acid

DOPAC:

3,4-dihydroxyphenylacetic acid

DOX:

Doxorubicin

DTG:

Differential thermogravimetry

EDC:

N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride

EDS:

Energy-dispersive spectra

EDX:

Energy-dispersive X-ray spectroscopy

EFPL:

Enhancement factor

EFSERS :

Raman enhancement factor

EI:

Extinction intensity

ELs:

Edge lengths

F:

Fluorescein

Fcc:

Face-centered cubic

FESEM:

Field emission scanning electron microscopy

FSM:

Folded-sheet mesoporous material

FTIR:

Fourier transform infrared spectroscopy

GCE:

Glassy carbon electrode

HAADF:

High-angle annular dark field

HD-PtNDs:

Highly dispersed platinum nanodots

HF:

Hydrofluoric acid

HRTEM:

High-resolution TEM

ICP-AES:

Inductively coupled plasma atomic emission spectrometry

LSPR:

Local surface plasmon resonance

MCM:

Mobil composition of matter, mobil crystalline materials

MCN:

Mesoporous carbon nitride

MESNa:

Sodium 2-mercaptoethanesulfonate

MIES:

Metastable impact electron spectroscopy techniques

ML:

Monolayer

MMT:

Montmorillonite clay

M-O-M′:

M and M′, metals; O, oxygen

MPTMS:

3-mercaptopropyltrimethoxysilane

MSN:

Mesoporous silica nanoparticle

MSN-PdTPP:

Pd-meso-tetra (4-carboxyphenyl) porphyrin (PdTPP) covalently embedded in MSNs

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

MW:

Microwave

Nbx:

Nanobox

Ncg:

Nanocage

Ncb:

Nanocube

NCls:

Nanoclusters

NCs:

Nanocrystals

Nf:

Nanoframes

NHA:

Normal human astrocytes

NMNP:

Noble metal nanoparticle

OA:

Oriented attachment

OR:

Ostwald ripening

OTS:

Octadecyltrimethoxysilane

PDT:

Photodynamic therapy

PdTPP:

Pd-meso-tetra (4-carboxyphenyl) porphyrin

PL:

Photoluminescence

PLE:

Photoluminescence excitation

PLGA:

Poly(l-glutamic acid)

PLL:

Poly(l-lysine)

PSA:

Prostate-specific antigen

PVPo:

Polyvinylpyrrolidone

QD:

Quantum dot

RBS:

Rutherford backscattering spectrometry

RF:

Radio frequency

Rh:

Rhodamine

Rh6G:

Rhodamine 6G

RhB:

Rhodamine B

SBA-15:

Mesoporous silica nanoparticles

SEM:

Scanning electron microscope

SERS:

Surface-enhanced Raman scattering

SG:

Sol-gel

SHE:

Standard hydrogen electrode

SiNWs:

Silicon nanowires

Si–OH:

Silanol groups

SPO:

Scanning probe oxidation

SPR:

Surface plasmon resonance

STM:

Scanning tunneling microscopy

TEM:

Transmission electron microscope

TEOS:

Tetraethoxysilane, tetraethyl orthosilicate

TGA:

Thermal gravimetric analysis

THF:

Tetrahydrofuran

TSPR:

Transverse SPR

UPD:

Underpotential deposition

UPS:

Ultraviolet photoelectron spectroscopy

UVA:

UV light

XRD:

X-ray diffraction

ΔE:

Given temperature

κ:

Dielectric constant decreases the value

ζ:

Zeta potential

References

  1. Gao J, Tang FQ, Ren J (2005) Electroless nickel deposition on amino-functionalized silica spheres. Surf Coat Technol 200:2249–2252

    Article  CAS  Google Scholar 

  2. Dun HJ, Zhang WQ, Wei Y, Song XQ, Li YM, Chen LR (2004) Layer-by-layer self-assembly of multilayer zirconia nanoparticles on silica spheres for HPLC packings. Anal Chem 76:5016–5023

    Article  CAS  Google Scholar 

  3. Dhas NA, Zaban A, Gedanken A (1999) Surface synthesis of zinc sulfide nanoparticles on silica microspheres: sonochemical preparation, characterization, and optical properties. Chem Mater 11:806–813

    Article  CAS  Google Scholar 

  4. Khushalani D, Hasenzahl S, Mann S (2001) Synthesis of mesoporous silica monoliths with embedded nanoparticles. J Nanosci Nanotechnol 1:129–132

    Article  CAS  Google Scholar 

  5. Li T, Moon J, Morrone AA, Mecholsky JJ, Talham DR, Adair JH (1999) Preparation of Ag/SiO2 nanosize composites by a reverse micelle and sol−gel technique. Langmuir 15:4328–4334

    Article  CAS  Google Scholar 

  6. Martino A, Yamamaka SA, Kawola JS, Loy DL (1997) Encapsulation of gold nanoclusters in silica materials via an inverse micelle/sol−gel synthesis. Chem Mater 9:423–429

    Article  CAS  Google Scholar 

  7. Chen W, Cai WP, Liang CH, Zhang LD (2001) Synthesis of gold nanoparticles dispersed within pores of mesoporous silica induced by ultrasonic irradiation and its characterization. Mater Res Bull 36:335–342

    Article  CAS  Google Scholar 

  8. Whilton NT, Berton B, Bronstein L, Hentze HP, Antonietti M (1999) Organized functionalization of mesoporous silica supports using prefabricated metal–polymer modules. Adv Mater 11:1014–1018

    Article  CAS  Google Scholar 

  9. Mayers B, Jiang X, Sunderland D, Cattle B, Xia Y (2003) Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids. J Am Chem Soc 125:13364–13365

    Article  CAS  Google Scholar 

  10. Yin Y, Erdonmez C, Aloni S, Alivisatos AP (2006) Faceting of nanocrystals during chemical transformation: From solid silver spheres to hollow gold octahedra. J Am Chem Soc 128:12671–12673

    Article  CAS  Google Scholar 

  11. Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966

    Article  CAS  Google Scholar 

  12. Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871

    Article  CAS  Google Scholar 

  13. Li Z, Li W, Camargo PHC, Xia Y (2008) Facile synthesis of branched an nanostructures by templating against a self-destructive lattice of magnetic Fe nanoparticles. Angew Chem Int Ed 47:9653–9656

    Article  CAS  Google Scholar 

  14. Zhao N, Li L, Huang T, Qi L (2010) Controlled synthesis of PbS–Au nanostar–nanoparticle heterodimers and cap-like Au nanoparticles. Nanoscale 2:2418–2423

    Article  CAS  Google Scholar 

  15. Wirtz M, Martin CR (2003) Template-fabricated gold nanowires and nanotubes. Adv Mater 15:455–458

    Article  CAS  Google Scholar 

  16. Hurst SJ, Payne EK, Qin L, Mirkin CA (2006) Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew Chem Int Ed 45:2672–2692

    Article  CAS  Google Scholar 

  17. Piquemal JY, Viau G, Beaunier P, Bozon-Verduraz F, Fiévet F (2003) One-step construction of silver nanowires in hexagonal mesoporous silica using the polyol process. Mater Res Bull 38:389–394

    Article  CAS  Google Scholar 

  18. Nishizawa M, Menon VP, Martin CR (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268:700–702

    Article  CAS  Google Scholar 

  19. Mitra A, Bhaumik A (2007) Nanoscale silver cluster embedded in artificial heterogeneous matrix consisting protein and sodium polyacrylate. Mater Lett 61:659–662

    Article  CAS  Google Scholar 

  20. Hu Y, Ge J, Lim D, Zhang T, Yin Y (2008) Size-controlled synthesis of highly water-soluble silver nanocrystals. J Solid State Chem 181:1524–1529

    Article  CAS  Google Scholar 

  21. Guoping L, Yunjun L, Wenting L, Jie L, Yujuan J, Sufang G (2010) Dependence of property of silver nanoparticles within dendrimer-template on molar ratios of Ag+ to PAMAM dendrimers. Chin J Chem 28:633–638

    Article  Google Scholar 

  22. Kumar A, Ramakrishnan V, Gonnade R, Ganesh KN, Sastry M (2002) Electrostatically entrapped DNA molecules in lipid thin films as templates for the in situ growth of silver nanoparticles. Nanotechnology 13:597–600

    Article  CAS  Google Scholar 

  23. Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13:1389–1393

    Article  CAS  Google Scholar 

  24. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    Article  CAS  Google Scholar 

  25. Heimer TA, Meyer GJ (1996) Luminescence of charge transfer sensitizers anchored to metal oxide nanoparticles. J Lumin 70:468–478

    Article  CAS  Google Scholar 

  26. Selvan ST, Nogami M, Nakamura A, Hamanaka Y (1999) A facile sol-gel method for the encapsulation of gold nanoclusters in silica gels and their optical properties. J Non-Cryst 255(2–3):254–258

    Article  Google Scholar 

  27. Lembacher C, Schubert U (1998) Nanosized platinum particles by sol-gel processing of tethered metal complexes: influence of the precursors and the organic group removal method on the particle size. New J Chem 22(7):721–724

    Google Scholar 

  28. Moller K, Bein T (1998) Inclusion chemistry in periodic mesoporous hosts. Chem Mater 10:2950–2963

    Article  CAS  Google Scholar 

  29. Schweyer F, Braunstein P, Estournés C, Guille J, Kessler H, Paillaud HL, Rosé J (2000) Metallic nanoparticles from heterometallic Co-Ru carbonyl clusters in mesoporous silica xerogels and MCM-41-type materials. Chem Commun (14):1271–1272

    Google Scholar 

  30. Guari Y, Thieuleux C, Mehdi A, Reyé C, Corriu RJP, Gomez-Gallardo S, Philippot K, Chaudret B, Dutartre R (2001) In situ formation of gold nanoparticles within functionalised ordered mesoporous silica via an organometallic ‘chimie douce’ approach. Chem Commun (15):1374–1375

    Google Scholar 

  31. Mukherjee P, Patra CR, Kumar R, Sastry M (2001) Entrapment and catalytic activity of gold nanoparticles in amine-functionalized MCM-41 matrices synthesized by spontaneous reduction of aqueous chloroaurate ions. Phys Chem Comm 4:24–25

    Google Scholar 

  32. Gomez S, Philippot K, Colliére V, Chaudret B, Senocq F, Lecante P (2000) Gold nanoparticles from self-assembled gold(I) amine precursors. Chem Commun (19):1945–1946

    Google Scholar 

  33. Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13:11–22

    Article  CAS  Google Scholar 

  34. Liz-Marzan LM, Griersig M, Mulvaney P (1996) Synthesis of nanosized gold–silica core shell particles. Langmuir 12:4329–4335

    Article  CAS  Google Scholar 

  35. Hall SR, Davis SA, Mann S (2000) Nanoparticle templating of organo-silica shells as a route to functionalized core-shell colloids. Langmuir 16:1454–1456

    Article  CAS  Google Scholar 

  36. Marinakos SM, Novak JP, Brousseau LC, House AB, Edeki EM, Feldhaus JC, Feldheim DL (1999) Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation. J Am Chem Soc 121:8518–8522

    Article  CAS  Google Scholar 

  37. Kobayashi Y, Correra-Duarte MA, Liz-Marzán LM (2001) Sol−gel processing of silica-coated gold nanoparticles. Langmuir 17:6375–6379

    Article  CAS  Google Scholar 

  38. Konya Z, Puntes VF, Kiricsi I, Zhu J, Alivisatos AP, Somorjai GA (2002) Nanocrystal templating of silica mesopores with tunable pore sizes. Nano Lett 2:907–910

    Article  CAS  Google Scholar 

  39. Stein A, Melde BJ (2001) The role of surfactants and amphiphiles in the synthesis of porous inorganic solids. Surf Sci Ser 100:819–851

    CAS  Google Scholar 

  40. Wei Y, Jin D, Ding T, Shih WH, Liu X, Cheng SZD, Fu Q (1998) A non-surfactant templating route to mesoporous silica materials. Adv Mater 10:313–316

    Article  CAS  Google Scholar 

  41. Wei Y, Dong H, Xu J, Feng Q (2002) Simultaneous immobilization of horseradish peroxidase and glucose oxidase in mesoporous sol–gel host materials. ChemPhysChem 3:802–808

    Article  CAS  Google Scholar 

  42. Dumestre F, Chaudret B, Amiens C, Renaud P, Fejes P (2004) Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)2]2. Science 303:821–823

    Article  CAS  Google Scholar 

  43. Rogach AL, Nagesha D, Koktysh D, Kotov NA (2000) Synthesis of “Raisin-Bun”-type composite nanoparticle spheres. Chem Mater 12:2676–2685

    Article  CAS  Google Scholar 

  44. Sertchook H, Avnir D (2003) Submicron silica/polystyrene composite particles prepared by a one-step sol-gel process. Chem Mater 15:1690–1694

    Article  CAS  Google Scholar 

  45. Mokari T, Sertchook H, Aharoni A, Ebenstein Y, Avnir D, Banin U (2005) Nano@micro: general method for entrapment of nanocrystals in sol-gel-derived composite hydrophobic silica spheres. Chem Mater 17:258–263

    Article  CAS  Google Scholar 

  46. Vallet-Regı M (2001) Ceramics for medical applications. J Chem Soc Dalton Trans 2:97–108

    Article  Google Scholar 

  47. Bogicevic A, Jennison DR (2002) Effect of oxide vacancies on metal island nucleation. Surf Sci 515:L481–L486

    Article  CAS  Google Scholar 

  48. Wahlström E, Lopez N, Schaub R, Thostrup P, Ronnau A, Africh C, Laegsgaard E, Norskov JK, Besenbacher F (2003) Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2(110). Phys Rev Lett 90:026101

    Article  CAS  Google Scholar 

  49. Haas G, Menck A, Brune H, Barth JV (2000) Nucleation and growth of supported clusters at defect sites: Pd/MgO(001). Phys ReV B 61:11105–11108

    Article  CAS  Google Scholar 

  50. Bäumer M, Frank M, Heemeier M, Kuhnemuth R, Stempel S, Freund HJ (2000) Nucleation and growth of transition metals on a thin alumina film. Surf Sci 454–456:957

    Article  Google Scholar 

  51. Kim YD, Wei T, Goodman DW (2003) Identification of defect sites on SiO2 thin films grown on Mo(112). Langmuir 19:354–357

    Article  CAS  Google Scholar 

  52. Liu ST, Maoz R, Schmid G, Sagiv J (2002) Template guided self-assembly of [Au55] clusters on nanolithographically defined monolayer patterns. Nano Lett 2:1055–1060

    Article  CAS  Google Scholar 

  53. Wouters D, Schubert US (2004) Nanolithography and nanochemistry: probe-related patterning techniques and chemical modification for nanometer-sized devices. Angew Chem Int Ed 43:2480–2495

    Article  CAS  Google Scholar 

  54. Yamaguchi T, Zoshida S, Kinbara A (1974) Optical effect of the substrate on the anomalous absorption of aggregated silver films. Thin Solid Films 21:173–187

    Article  CAS  Google Scholar 

  55. Wind MM, Vlieger J, Bedeaux D (1987) The polarizability of a truncated sphere on a substrate I. Phys A 141:33–57

    Article  Google Scholar 

  56. Gozhenko VV, Grechko LG, Whites KW (2003) Electrodynamics of spatial clusters of spheres: substrate effects. Phys Rev B 68:125422

    Article  CAS  Google Scholar 

  57. Westcott SL, Oldenburg SJ, Lee TR, Halas NJ (1998) Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces. Langmuir 14:5396–5401

    Article  CAS  Google Scholar 

  58. Pol VG, Gedanken A, Calderon-Moreno J (2003) Deposition of gold nanoparticles on silica spheres: a sonochemical approach. Chem Mater 15:1111–1118

    Article  CAS  Google Scholar 

  59. Kobayashi Y, Tadaki Y, Nagao D, Konno M (2005) Deposition of gold nanoparticles on silica spheres by electroless metal plating technique. J Colloid Interface Sci 283:601–604

    Article  CAS  Google Scholar 

  60. Lim YT, Park OO, Jung HT (2003) Gold nanolayer-encapsulated silica particles synthesized by surface seeding and shell growing method: near infrared responsive materials. J Colloid Interface Sci 263:449–453

    Article  CAS  Google Scholar 

  61. Zhang Q, Yin Y (2013) Beyond spheres: Murphy’s silver nanorods and nanowires. Chem Commun 49:215–217

    Article  CAS  Google Scholar 

  62. Sanchez-Gaytan BL, Qian Z, Hastings SP, Reca ML, Fakhraai Z, Park SJ (2013) Controlling the topography and surface plasmon resonance of gold nanoshells by a templated surfactant-assisted seed growth method. J Phys Chem C 117:8916–8923

    Article  CAS  Google Scholar 

  63. Toshima N (2000) In: Sugimoto T (ed) Fine Particles: synthesis, characterization, and mechanisms of growth, vol 92. Marcel Dekker, New York, USA, Chap 9, p. 430

    Google Scholar 

  64. Bonet F, Guéry C, Guyomard D, Herrera-Urbina R, Tekaia-Elhsissen K, Tarascon JM (1999) Electrochemical reduction of noble metal compounds in ethylene glycol. Int Inorg Mater 1:47–51

    Article  CAS  Google Scholar 

  65. Kim DW, Lee JM, Oh C, Kim DS, Oh SG (2006) A novel preparation route for platinum–polystyrene heterogeneous nanocomposite particles using alcohol-reduction method. J Colloid Interface Sci 297:365–369

    Article  CAS  Google Scholar 

  66. Snoeks E, van Blaaderen A, van Dillen T, van Kats CM, Brongersma ML, Polman A (2000) Colloidal ellipsoids with continuously variable shape. Adv Mater 12:1511–1514

    Article  CAS  Google Scholar 

  67. Benyagoub A, Klaumiinzer S, Thome L, Dran JC, Garrido F, Dunlop A (1992) Ion-beam induced plastic deformation in amorphous materials investigated by marker implantation and RBS. Nucl Instr Methods B64:684–686

    Article  CAS  Google Scholar 

  68. Liu J, Hu X, Hou S, Wen T, Liu W, Zhu X, Yin JJ, Wu X (2012) Au@Pt core/shell nanorods with peroxidase-and ascorbate oxidase-like activities for improved detection of glucose. Sens Actuators B 166:708–714

    Article  CAS  Google Scholar 

  69. Bo X, Bai J, Qi B, Guo L (2011) Ultra-fine Pt nanoparticles supported on ionic liquid polymer-functionalized ordered mesoporous carbons for nonenzymatic hydrogen peroxide detection. Biosens Bioelectron 28:77–83

    Article  CAS  Google Scholar 

  70. Feng L, Wu X, Ren L, Xiang Y, He W, Zhang K, Zhou W, Xie S (2008) Well-controlled synthesis of Au@ Pt nanostructures by gold-nanorod-seeded growth. Chem Eur J 14:9764–9771

    Article  CAS  Google Scholar 

  71. He W, Liu Y, Yuan J, Yin JJ, Wu X, Hu X, Zhang K, Liu J, Chen C, Ji Y (2011) Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 32:1139–1147

    Article  CAS  Google Scholar 

  72. Tedsree K, Li T, Jones S, Chan CWA, Yu KMK, Bagot PAJ, Marquis EA, Smith GDW, Tsang SCE (2011) Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst. Nat Nanotechnol 6:302–307

    Article  CAS  Google Scholar 

  73. Wang J, Xia H, Zhang Y, Lu H, Kamat R, Dobrynin AV, Cheng J, Lin Y (2013) Nucleation-controlled polymerization of nanoparticles into supramolecular structures. J Am Chem Soc 135:11417–11420

    Article  CAS  Google Scholar 

  74. Lattuada M, Hatton TA (2011) Synthesis, properties and applications of janus nanoparticles. Nano Today 6:286–308

    Article  CAS  Google Scholar 

  75. Reinhard BM, Siu M, Agarwal H, Alivisatos AP, Liphardt J (2005) Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett 5:2246–2252

    Article  CAS  Google Scholar 

  76. Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674–12675

    Article  CAS  Google Scholar 

  77. Loweth CJ, Caldwell WB, Peng X, Alivisatos AP, Schultz PG (1999) DNA-based assembly of gold nanocrystals. Angew Chem Int Ed 38:1808–1812

    Article  CAS  Google Scholar 

  78. Busson MP, Rolly B, Stout B, Bonod N, Larquet E, Polman A, Bidault S (2011) Optical and topological characterization of gold nanoparticle dimers linked by a single dna double strand. Nano Lett 11:5060–5065

    Article  CAS  Google Scholar 

  79. Wolcott A, Gerion D, Visconte M, Sun J, Schwartzberg A, Chen SW, Zhang JZ (2006) Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins. J Phys Chem B 110:5779–5789

    Article  CAS  Google Scholar 

  80. Lee DC, Mikulec FV, Pelaez JM, Koo B, Korgel BA (2006) Synthesis and magnetic properties of silica-coated FePt nanocrystals. J Phys Chem B 110:11160–11166

    Article  CAS  Google Scholar 

  81. Sivakumar S, Diamente PR, Veggel FC (2006) Silica coated Ln3+-doped LaF3 nanoparticles as robust down-and upconverting biolabels. Chem Eur J 12:5878–5884

    Article  CAS  Google Scholar 

  82. Liu S, Han MY (2010) Silica-coated metal nanoparticles. Chem Asian J 5:36–45

    CAS  Google Scholar 

  83. Burns A, Ow H, Wiesner U (2006) Fluorescent coreshell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chem Soc Rev 35:1028–1042

    Article  CAS  Google Scholar 

  84. Haensch C, Hoeppener S, Schubert US (2010) Chemical modification of self-assembled silane based monolayers by surface reactions. Chem Soc Rev 39:2323–2334

    Article  CAS  Google Scholar 

  85. Knopp D, Tang D, Niessner R (2009) Review: bioanalytical applications of biomolecule-functionalized nanometersized doped silica particles. Anal Chim Acta 647:14–30

    Article  CAS  Google Scholar 

  86. Melde BJ, Johnson BJ (2010) Mesoporous materials in sensing: morphology and functionality at the meso-interface. Anal Bioanal Chem 398:1565–1573

    Article  CAS  Google Scholar 

  87. Lee CH, Lin TS, Mou CY (2009) Mesoporous materials for encapsulating enzymes. Nano Today 4:165–179

    Article  CAS  Google Scholar 

  88. Walcarius A, Kuhn A (2008) Ordered porous thin films in electrochemical analysis. TrAC Trends Anal Chem 27:593–603

    Article  CAS  Google Scholar 

  89. Jackson JB, Halas NJ (2001) Silver nanoshells: variations in morphologies and optical properties. J Phys Chem B 105:2743–2746

    Article  CAS  Google Scholar 

  90. Caruso F, Spasova M, Salgueiriño-Maceira V, Liz-Marzán LM (2001) Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Adv Mater 13:1090–1094

    Article  CAS  Google Scholar 

  91. Renard C, Ricolleau C, Fort E, Besson S, Gacoin T, Boilot JP (2002) Coupled technique to produce two-dimensional superlattices of nanoparticles. Appl Phys Lett 80:300–302

    Article  CAS  Google Scholar 

  92. Gurin VS, Alexeenko AA, Yumashev KV, Prokoshin R, Zolotovskaya SA, Zhavnerko GA (2003) Structure and optical properties of Cu x O- and Cu x Se-doped sol-gel silica glasses. Mater Sci Eng C 23:1063–1067

    Article  CAS  Google Scholar 

  93. Cho S, Lee S, Oh SG, Park SJ, Kim WM, Cheong BK, Chung M, Song KB, Lee TS, Kim SG (2000) Optical properties of Au nanocluster embedded dielectric films. Thin Solid Films 377:97–102

    Article  Google Scholar 

  94. Konya Z, Puntes VF, Kiricsi I, Zhu J, Ager JW, Ko MK, Frei H, Alivisatos P, Somorjai GA (2003) Synthetic insertion of gold nanoparticles into mesoporous silica. Chem Mater 15:1242–1248

    Article  CAS  Google Scholar 

  95. McMorn P, Htchings GJ (2004) Heterogeneous enantioselective catalysts: strategies for the immobilisation of homogeneous catalysts. Chem Soc Rev 33:108–122

    Article  CAS  Google Scholar 

  96. Kresge CT, Leonowicz ME, Roth WJ, Varuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a lipid-crystal template mechanism. Nature 359:710–712

    Article  CAS  Google Scholar 

  97. Mishra GS, Kumar A (2012) Hydroisomerization of saturated hydrocarbons with novel MCM-41 immobilized Re(V) complex catalysts. Appl Catal A Gen 429–430:1–8

    Article  CAS  Google Scholar 

  98. He J, Ichinose I, Kunitake T, Nakao A (2002) In situ synthesis of noble metal nanoparticles in ultrathin TiO2−gel films by a combination of ion-exchange and reduction processes. Langmuir 18:10005–10010

    Article  CAS  Google Scholar 

  99. He J, Ichinose I, Fujikawa S, Kunitake T, Nakao A (2002) Reversible conversion of nanoparticles of metallic silver and silver oxide in ultrathin TiO2 films: a chemical transformation in nano-space. Chem Commun (17):1910–1911

    Google Scholar 

  100. Besson S, Gacoin T, Ricolleau C, Boilot JP (2003) Silver nanoparticle growth in 3D-hexagonal mesoporous silica films. Chem Commun (3):360–361

    Google Scholar 

  101. Pinto RJB, Marques PAAP, Martins MA, Neto CP, Trindade T (2007) Electrostatic assembly and growth of gold nanoparticles in cellulosic fibres. J Colloid Interface Sci 312:506–512

    Article  CAS  Google Scholar 

  102. Kawazu M, Nara M. Tsujino T (2004) Preparation of Au-TiO2 hybrid nano particles in silicate film made by sol-gel method. J Sol-Gel Sci Technol 31:109–112

    Google Scholar 

  103. Shameli K, Bin Ahmad M, Yunus WMZW, Ibrahim NA, Gharayebi Y, Sedaghat S (2010) Synthesis of silver/montmorillonite nanocomposites using γ-irradiation. Int J Nanomed 5:1067–1077

    Article  CAS  Google Scholar 

  104. Cho KH, Park JE, Osaka T, Park SG (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956–960

    Article  CAS  Google Scholar 

  105. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  Google Scholar 

  106. Ahmad MB, Shameli K, Yunus WMZW, Ibrahim NA, Darroudi M (2010) Synthesis and characterization of silver/clay/ starch bionanocomposites by green method. Aust J Basic Appl Sci 4:2158–2165

    Google Scholar 

  107. Pillai SK, Ray SS, Scriba M, Bandyopadhyay J, Van der Merwe MPR, Badenhorst J (2013) Microwave assisted green synthesis and characterization of silver/montmorillonite heterostructures with improved antimicrobial properties. Appl Clay Sci 83–84:315–321

    Article  CAS  Google Scholar 

  108. Lee JM, Kim DW, Jun YD, Oh SG (2006) Preparation of silica-silver heterogeneous nanocomposite particles by one-pot preparation strategy using polyol process: size-controlled immobilization of silver nanoparticles. Mater Res Bull 41:1407–1416

    Article  CAS  Google Scholar 

  109. Lee JM, Kim DW, Lee YH, Oh SG (2005) New approach for preparation of silver-polystyrene heterogeneous nanocomposite by polyol process. Chem Lett 34:928–929

    Article  CAS  Google Scholar 

  110. Cao Y, Li YS, Tseng JL, Desiderio DM (2001) Interfacial study of benzenesulfinate chemisorbed on silver. Apectrochim Acta Part A 57:27–34

    Article  CAS  Google Scholar 

  111. Park JH, Kim YG, Oh C, Shin SI, Kim YC, Oh SG, Kong SH (2005) Fabrication of hollow silver spheres by MPTMS-functionalized hollow silica spheres as templates. Mater Res Bull 40:271–280

    Article  CAS  Google Scholar 

  112. Badley RD, Ford WT, McEnroe JJ, Assink RA (1990) Surface modification of colloidal silica. Langmuir 6:792–801

    Article  CAS  Google Scholar 

  113. Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Ávalos-Borja M, Castillón-Barraza FF, Posada-Amarillas A (2005) Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol. Physica E 27:104–112

    Article  CAS  Google Scholar 

  114. Zhang J, Liu J, Wang S, Zhan P, Wang Z, Ming N (2004) Facile methods to coat polystyrene and silica colloids with metal. Adv Funct Mater 14:1089–1096

    Article  CAS  Google Scholar 

  115. Wang DS, Kerker M, Chew H (1980) Raman and fluorescent scattering by molecules embedded in dielectric spheroids. Appl Opt 19:2135–2328

    Google Scholar 

  116. Schierhorn M, Liz-Marzán LM (2002) Synthesis of bimetallic colloids with tailored intermetallic separation. Nano Lett 2:13–16

    Article  CAS  Google Scholar 

  117. Shin HS, Yang HJ, Kim SB, Lee MS (2004) Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in gamma-irradiated silver nitrate solution. J Colloid Interface Sci 274:89–94

    Article  CAS  Google Scholar 

  118. Kim YH, Lee DK, Kang YS (2005) Synthesis and characterization of Ag and Ag–SiO2 nanoparticles. Colloids Surf A Physicochem Eng Aspects 257–258:273–276

    Article  CAS  Google Scholar 

  119. Wu SH, Chen DH (2004) Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloids Interface Sci 273:165–169

    Article  CAS  Google Scholar 

  120. Magudapathy P, Gangopadhyay BK (2001) Electrical transport studies of Ag nanoclusters embedded in glass matrix. Phys B 299:142–146

    Article  CAS  Google Scholar 

  121. George C, Konstantin S, Therese MC (1996) Unusual extinction spectra of nanometer-sized silver particles arranged in two dimensional arrays. J Phys Chem 100:5166–5168

    Article  Google Scholar 

  122. Rivas L, Sanchez-Cortes S, Garcia-Ramos JV, Morcillo G (2001) Growth of silver colloidal particles obtained by citrate reduction to increase the raman enhancement factor. Langmuir 17:574–577

    Article  CAS  Google Scholar 

  123. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  124. Lee JM, Kim DW, Kim TH, Oh SG (2007) Facile route for preparation of silica-silver heterogeneous nanocomposite particles using alcohol reduction method. Mater Lett 61:1558–1562

    Article  CAS  Google Scholar 

  125. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  126. Sarkar A, Kapoor S, Mukherjee T (2005) Preparation, characterization, and surface modification of silver nanoparticles in formamide. J Phys Chem B 109:7698–7704

    Article  CAS  Google Scholar 

  127. Yu JY, Schreiner S, Vaska L (1990) Homogeneous catalytic production of hydrogen and other molecules from water-DMF solutions. Inorg Chim Acta 170:145–147

    Article  CAS  Google Scholar 

  128. Tojo T, Blanco MC, Rivadulla F, Lopez-Quintela MM (1997) Kinetics of the formation of particles in microemulsions. Langmuir 13:1970–1977

    Google Scholar 

  129. Kheiralla ZH, Rushdy AA, Betiha MA, Yakob NAN (2014) High-performance antibacterial of montmorillonite decorated with silver nanoparticles using microwave-assisted method. J Nanopart Res 16:2560

    Article  CAS  Google Scholar 

  130. Papa M, Pradell T, Crespo D, Calderon-Moreno JM (2007) Stable silver colloidal dispersions using short chain polyethylene glycol. Colloids Surf A 303:184–190

    Article  CAS  Google Scholar 

  131. Senthil Kumar P, Ray S, Sunandana CS (2001) Sb-assisted AgI nanoparticle growth in thin films. Mater Phys Mech 4:39–41

    Google Scholar 

  132. Neri G, Rizzo G, Arico AS, Crisafulli C, de Luca L, Donato A, Musolino MG, Pietropaolo R (2007) One-pot synthesis of naturanol from a-pinene oxide on bifunctional Pt-Sn/SiO2 heterogeneous catalysts (I) the catalytic system. Appl Catal A 325:15–24

    Article  CAS  Google Scholar 

  133. Akelah A, Rehab A, Agag T, Betiha M (2007) Polystyrene nanocomposite materials by in situ polymerization into montmorillonite-vinyl monomer interlayers. J Appl Polym Sci 103:3739–3750

    Article  CAS  Google Scholar 

  134. Rehab A, Akelah A, Agag T, Betiha MJ (2007) Polymer-organoclay hybrids by polymerization into montmorillonitevinyl monomer interlayers. J Appl Polym Sci 106:3502–3514

    Article  CAS  Google Scholar 

  135. Xie YW, Ye RQ, Liu HL (2006) Synthesis of silver nanoparticles in re-verse micelles stabilized by natural biosurfactant. Colloid Surf A 279:175–178

    Article  CAS  Google Scholar 

  136. He S, Yao J, Jiang P, Shi D, Zhang H, Xie S, Pang S, Gao H (2001) Formation of silver nanoparticles and self-assembled twodimensional ordered superlattice. Langmuir 17:1571–1575

    Article  CAS  Google Scholar 

  137. Choi H, Lee JP, Ko SJ, Jung JW, Park H, Yoo S, Park O, Jeong JR, Park S, Kim JY (2013) Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells. Nano Lett 13:2204–2208

    Article  CAS  Google Scholar 

  138. Aihara N, Torigoe K, Esumi K (1998) Preparation and characterization of gold and silver nanoparticles in layered laponite suspensions. Langmuir 14:4945–4949

    Article  CAS  Google Scholar 

  139. Vadakkekara R, Chakraborty M, Parikh PA (2012) Catalytic performance of silica-supported silver nanoparticles for liquid-phase oxidation of ethylbenzene. Ind Eng Chem Res 51:5691–5698

    Article  CAS  Google Scholar 

  140. Mao H, Gao X, Yang J, Li B (2011) A novel one-step synthesis of meso-structured silica-pillared clay with highly ordered gallery organic-inorganic hybrid frame. Appl Surf Sci 257:4655–4662

    Article  CAS  Google Scholar 

  141. Betiha MA, Hassan HMA, Al-Sabagh AM, Khder AS, Ahmed EA (2012) Direct synthesis and the morphological control of highly ordered mesoporous AlSBA-15 using urea-tetrachloroaluminate as a novel aluminum source. J Mater Chem 22:17551–17559

    Article  CAS  Google Scholar 

  142. Shameli K, Bin Ahmad M, Zargar M, Yunus WMZW, Rustaiyan A, Ibrahim NA (2011) Synthesis of silver nanoparticles in montmorillonite and their antibacterial behaviour. Int J Nanomed 6:581–590

    Article  CAS  Google Scholar 

  143. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  144. Stein A, Melde BJ, Schroden RC (2000) Hybrid inorganic-organic mesoporous silicates-nanoscopic reactors coming of age. Adv Mater 12:1403–1419

    Article  CAS  Google Scholar 

  145. Soto G, Tiznado H, Contreras O, Pérez-Tijerina E, Cruz-Reyes J, Del Valle M, Portillo A (2011) Preparation of a Ag/SiO2 nanocomposite using a fluidized bed microwave plasma reactor, and its hydrodesulphurization and Escherichia coli bactericidal activities. Powder Technol 213:55–62

    Article  CAS  Google Scholar 

  146. Mahltig B, Gutmann E, Reibold M, Meyer DC, Böttcher H (2009) Synthesis of Ag and Ag/SiO2 sols by solvothermal method and their bactericidal activity. J Sol-Gel Sci Technol 51:204–214

    Article  CAS  Google Scholar 

  147. Meng XK, Tang SC, Vongehr S (2010) A review on diverse silver nanostructures. J Mater Sci Technol 26:487–522

    Article  CAS  Google Scholar 

  148. Pinchuk A, Hilger A, von Plessen G, Kreibig U (2004) Substrate effect on the optical response of silver nanoparticles. Nanotechnology 15:1890–1896

    Article  CAS  Google Scholar 

  149. Starodub D, Gustafsson T, Garfunkel E (2004) The reaction of O2 with Al(110): a medium energy ion scattering study of nano-scale oxidation. Surf Sci 552:199–214

    Article  CAS  Google Scholar 

  150. Hilger A, Tenfelde M, Kreibig U (2001) Silver nanoparticles deposited on dielectric surfaces. Appl Phys B 73:361–372

    Article  CAS  Google Scholar 

  151. Bellec M, Royon A, Bourhis K, Choi J, Bousquet B, Treguer M, Cardinal T, Videau JJ, Richardson M, Canioni L (2010) 3D patterning at the nanoscale of fluorescent emitters in glass. J Phys Chem C 114:15584–15588

    Article  CAS  Google Scholar 

  152. Eichelbaum M, Rademann K, Hoell A, Tatchev DM, Weigel W, Stößer R, Pacchioni G (2008) Photoluminescence of atomic gold and silver particles in soda-lime silicate glasses. Nanotechnology 19:135701–135709

    Article  CAS  Google Scholar 

  153. Tikhomirov VK, Rodríguez VD, Kuznetsov A, Kirilenko D, Van Tendeloo G, Moshchalkov VV (2010) Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters. Opt Express 18:22032–22040

    Article  CAS  Google Scholar 

  154. Royon A, Bourhis K, Bellec M, Papon G, Bousquet B, Deshayes Y, Cardinal T, Canioni L (2010) Silver clusters embedded in glass as a perennial high capacity optical recording medium. Adv Mater 22:5282–5286

    Article  CAS  Google Scholar 

  155. Sandroff CJ, Herschbach DR (1985) Kinetics of displacement and charge transfer reactions probed by SERS: evidence for distinct donor and acceptor sites on colloidal gold surfaces. Langmuir 1:131–135

    Article  CAS  Google Scholar 

  156. Zhang H, He HX, Wang J, Mu T, Liu ZF (1998) Force titration of amino group-terminated self-assembled monolayers using chemical force microscopy. Appl Phys A 66:S269–S271

    Article  CAS  Google Scholar 

  157. Zhu T, Fu XY, Mu T, Wang J, Liu ZF (1999) pH-dependent adsorption of gold nanoparticles on p-aminothiophenol-modified gold substrates. Langmuir 15:5197–5199

    Article  CAS  Google Scholar 

  158. Zheng JW, Zhu ZH, Chen HF, Liu ZF (2000) Nanopatterned assembling of colloidal gold nanoparticles on silicon. Langmuir 16:4409–4412

    Article  CAS  Google Scholar 

  159. Ling X, Zhu X, Zhang J, Zhu T, Liu M, Tong L, Liu Z (2005) Reproducible patterning of single Au nanoparticles on silicon substrates by scanning probe oxidation and self-assembly. J Phys Chem B 109:2657–2665

    Article  CAS  Google Scholar 

  160. Rye RR, Nelson GC, Dugger MT (1997) Mechanistic aspects of alkylchlorosilane coupling reactions. Langmuir 13:2965–2972

    Article  CAS  Google Scholar 

  161. Min BK, Wallace WT, Santra AK, Goodman DW (2004) Role of defects in the nucleation and growth of Au nanoclusters on SiO2 thin films. J Phys Chem B 108:16339–16343

    Article  CAS  Google Scholar 

  162. Pacchioni G, Ierano G (1998) Ab initio theory of optical transitions of point defects in SiO2. Phys Rev B 57:818–832

    Article  CAS  Google Scholar 

  163. Namai Y, Fukui KI, Iwasawa Y (2003) Atom-resolved noncontact atomic force microscopic observations of CeO2(111) surfaces with different oxidation states: surface structure and behavior of surface oxygen atoms. J Phys Chem B 107:11666–11673

    Article  CAS  Google Scholar 

  164. Ren H, Zhang L (2010) In situ growth approach for preparation of Au nanoparticle-doped silica aerogel. Colloids Surf A Physicochem Eng Aspects 372(1–3):98–101

    Article  CAS  Google Scholar 

  165. Koyanaka H, Takeuchi K, Loong CK (2005) Gold recovery from parts-per-trillion level aqueous solutions by a nanostructure Mn2O2 adsorbent. Sep Purif Technol 43:9–15

    Article  CAS  Google Scholar 

  166. Zhang L, Feng YG, Wang LY, Zhang JY, Chen M, Qian DJ (2007) Comparative studies between synthetic routes of SiO2@Au composite nanoparticles. Mater Res Bull 42:1457–1467

    Article  CAS  Google Scholar 

  167. Wang W, Ruan CM, Gu BH (2006) Development of gold-silica composite nanoparticle substrates for perchlorate detection by surface-enhanced Raman spectroscopy. Anal Chim Acta 567:121–126

    Article  CAS  Google Scholar 

  168. Hussain I, Brust M, Papworth AJ, Cooper AI (2003) Preparation of acrylate-stabilized gold and silver hydrosols and gold-polymer composite films. Langmuir 19:4831–4835

    Article  CAS  Google Scholar 

  169. Guari Y, Thieuleux C, Mehdi A, Reyé C, Corriu RJP, Gomez-Gallardo S, Philippot K, Chaudret B (2003) In situ formation of gold nanoparticles within thiol functionalized HMS-C16 and SBA-15 type materials via an organometallic two-step approach. Chem Mater 15:2017–2024

    Article  CAS  Google Scholar 

  170. Cheng S, Wei Y, Feng QW, Qiu KY, Pang JB, Jansen SA, Yin R, Ong K (2003) Facile synthesis of mesoporous gold-silica nanocomposite materials via sol-gel process with nonsurfactant templates. Chem Mater 15:1560–1566

    Article  CAS  Google Scholar 

  171. Joo J, Hyeon T, Hyeon-Lee J (2000) Fabrication of novel mesoporous dimethylsiloxane-incorporated silicas. Chem Commun 16:1487–1488

    Article  Google Scholar 

  172. Zhao D, Hou Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036

    Article  CAS  Google Scholar 

  173. Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1:18–52

    Article  CAS  Google Scholar 

  174. Smith DD, Sibille L, Ignont E, Cronise RJ, Noever DA (2000) Noble metal immersion spectroscopy of silica alcogels and aerogels. J Porous Mater 7:499–508

    Article  CAS  Google Scholar 

  175. Bloemer MJ, Haus JW, Ashley PR (1990) Degenerate four-wave mixing in colloidal gold as a function of particle size. J Opt Soc Am B 7:790–795

    Article  CAS  Google Scholar 

  176. Stoermer RL, Keating CD (2006) Distance-dependent emission from dye-labeled oligonucleotides on striped Au/Ag nanowires: effect of secondary structure and hybridization efficiency. J Am Chem Soc 128:13243–13254

    Article  CAS  Google Scholar 

  177. Zhang J, Fu Y, Lakowicz JR (2007) Emission behavior of fluorescently labeled silver nanoshell: enhanced self-quenching by metal nanostructure. J Phys Chem C 111:1955–1961

    Article  CAS  Google Scholar 

  178. Zhang J, Fu Y, Mei Y, Jiang F, Lakowicz JR (2010) Fluorescent metal nanoshell probe to detect single miRNA in lung cancer cell. Anal Chem 82:4464–4471

    Article  CAS  Google Scholar 

  179. Huang X, Peng X, Wang Y, Wang Y, Shin DM, El-Sayed MA, Nie S (2010) A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 4:5887–5896

    Article  CAS  Google Scholar 

  180. Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36

    Article  CAS  Google Scholar 

  181. Brinkley M (1992) A brief survey of methods for preparing protein conjugates with dyes, haptens and crosslinking reagents. Bioconjugate Chem 3:2–13

    Article  CAS  Google Scholar 

  182. Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41:1842–1851

    Article  CAS  Google Scholar 

  183. Enderlein J (2002) Spectral properties of a fluorescing molecule within a spherical metallic cavity. Phys Chem Chem Phys 4:2780–2786

    Article  CAS  Google Scholar 

  184. Enderlein J (2002) Theoretical study of single molecule fluorescence in a metallic nanocavity. Appl Phys Letts 80:315–317

    Article  CAS  Google Scholar 

  185. Zhang J, Fu Y, Liang D, Nowaczyk K, Zhao RY, Lakowicz JR (2008) Single-cell fluorescence imaging using metal plasmon-coupled probe 2: single-molecule counting on lifetime image. Nano Lett 8:1179–1186

    Article  CAS  Google Scholar 

  186. Zhang J, Fu Y, Chowdhury MH, Lakowicz JR (2008) Single-molecule studies on fluorescently labeled silver particles: effects of particle size. J Phys Chem C 112:18–26

    Article  CAS  Google Scholar 

  187. Zhang J, Fu Y, Lakowicz JR (2011) Fluorescent metal nanoshells: lifetime-tunable molecular probes in fluorescent cell imaging. J Phys Chem C 115:7255–7260

    Article  CAS  Google Scholar 

  188. Kerdi F, Caps V, Tuel A (2011) Mesostructured Au/C materials obtained by replication of functionalized SBA-15 silica containing highly dispersed gold nanoparticles. Microporous Mesoporous Mater 140:89–96

    Article  CAS  Google Scholar 

  189. Corma A, García H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126

    Article  CAS  Google Scholar 

  190. Hu JC, Chen LF, Zhu K, Suchopar A, Richards R (2007) Aerobic oxidation of alcohols catalyzed by gold nano-particles confined in the walls of mesoporous silica. Catal Today 122:277–283

    Article  CAS  Google Scholar 

  191. Aprile C, Abad A, Garcia H, Corma A (2005) Synthesis and catalytic activity of periodic mesoporous materials incorporating gold nanoparticles. J Mater Chem 15:4408–4413

    Article  CAS  Google Scholar 

  192. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665

    Article  CAS  Google Scholar 

  193. Jan JS, Chuang TH, Chen PJ, Teng H (2011) Layer-by-layer polypeptide macromolecular assemblies-mediated synthesis of mesoporous silica and gold nanoparticle/mesoporous silica tubular nanostructures. Langmuir 27:2834–2843

    Article  CAS  Google Scholar 

  194. Mieszawska AJ, Slawinski GW, Zamborini FP (2006) Directing the growth of highly-aligned gold nanorods by a surface chemical amidation reaction. J Am Chem Soc 128:5622–5623

    Article  CAS  Google Scholar 

  195. Taub N, Krichevski O, Markovich G (2003) Growth of gold nanorods on surfaces. J Phys Chem B 107:11579–11582

    Article  CAS  Google Scholar 

  196. Mieszawska AJ, Jalilian R, Sumanasekera GU, Zamborini FP (2005) Synthesis of gold nanorod/single wall carbon nanotube heterojunctions directly on surfaces. J Am Chem Soc 127:10822–10823

    Article  CAS  Google Scholar 

  197. Mieszawska AJ, Zamborini FP (2005) Gold nanorods grown directly on surfaces from microscale patterns of gold seeds. Chem Mater 17:3415–3420

    Article  CAS  Google Scholar 

  198. Wei Z, Mieszawska AJ, Zamborini FP (2004) Synthesis and manipulation of high aspect ratio gold nanorods grown directly on surfaces. Langmuir 20:4322–4326

    Article  CAS  Google Scholar 

  199. Wei Z, Zamborini FP (2004) Directly monitoring the growth of gold nanoparticle seeds into gold nanorods. Langmuir 20:11301–11304

    Article  CAS  Google Scholar 

  200. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun 7:617–618

    Article  Google Scholar 

  201. Link S, Burda C, Nikoobakht B, El-Sayed MA (2000) Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104:6152–6163

    Article  CAS  Google Scholar 

  202. Rodriguez-Fernandez J, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2005) Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. J Phys Chem B 109:14257–14261

    Article  CAS  Google Scholar 

  203. Roorda S, van Dillen T, Polman A, Graf C, van Blaaderen A, Kooi BJ (2004) Aligned gold nanorods in silica made by ion irradiation of core-shell colloidal particles. Adv Mater 16:235–237

    Article  CAS  Google Scholar 

  204. van Dillen T, van Blaaderen A, Fukarek W, Polman A (2001) Energy-dependent anisotropic deformation of colloidal silica particles under MeV Au irradiation. Appl Phys Lett 78:910–912

    Article  CAS  Google Scholar 

  205. Trinkaus H, Ryazanov AI (1995) Viscoelastic model for the plastic flow of amorphous solids under energetic ion bombardment. Phys Rev Lett 74:5072–5075

    Article  CAS  Google Scholar 

  206. Brongersma ML, Snoeks E, van Dillen T, Polman A (2000) Origin of MeV ion irradiation-induced stress changes in SiO2. J Appl Phys 88:59–64

    Article  CAS  Google Scholar 

  207. Snoeks E, Boutros KS, Barone J (1997) Stress relaxation in tungsten films by ion irradiation. Appl Phys Lett 71:267–269

    Article  CAS  Google Scholar 

  208. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York (Chapter 12), pp 336–338

    Google Scholar 

  209. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  210. Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113–1–191113-3

    Article  CAS  Google Scholar 

  211. Garozzo C, Puglisi RA, Bongiorno C, Scalese S, Rimini E, Lombardo S (2011) Selective diffusion of gold nanodots on nanopatterned substrates realized by self-assembly of diblock copolymers. J Mater Res 26:240–246

    Article  CAS  Google Scholar 

  212. Garozzo C, La Magna A, Mannino G, Privitera V, Scalese S, Sberna PM, Simone F, Puglisi RA (2013) Competition between uncatalyzed and catalyzed growth during the plasma synthesis of Si nanowires and its role on their optical properties. J Appl Phys 113:214313

    Article  CAS  Google Scholar 

  213. Huang Z, Shimizu T, Senz S, Zhang ZX, Lee W, Geyer N, Gösele U (2009) Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions. Nano Lett 9:2519–2525

    Article  CAS  Google Scholar 

  214. Chang SW, Chuang VP, Boles ST, Thompson CV (2010) Metalcatalyzed etching of vertically aligned polysilicon and amorphous silicon nanowire arrays by etching direction confinement. Adv Funct Mater 20:4364–4370

    Article  CAS  Google Scholar 

  215. Milazzo RG, D’Arrigo G, Spinella C, GrimaldiMG Rimini E (2012) Ag-assisted chemical etching of (100) and (111) n-type silicon substrates by varying the amount of deposited metal. J Electrochem Soc 159:D521–D525

    Article  CAS  Google Scholar 

  216. Akhtari-Zavareh A, Li W, Maroun F, Allongue P, Kavanagh KL (2013) Improved chemical and electrical stability of gold silicon contacts via epitaxial electrodeposition. J Appl Phys 113:063708

    Article  CAS  Google Scholar 

  217. Hiraki A, Lugujjo E, Mayer JW (1972) Formation of silicon oxide over gold layers on silicon substrates. J Appl Phys 43:3643

    Article  CAS  Google Scholar 

  218. Okuno K, Ito T, Iwami M, Hiraki A (1980) Presence of critical Au film thickness for room temperature interfacial reaction between Au(film) and Si(crystal substrate). Solid State Commun 34:493–497

    Article  CAS  Google Scholar 

  219. Andersson TG (1982) The initial growth of vapour deposited gold films. Gold Bull 15:7–18

    Article  CAS  Google Scholar 

  220. Hiraki A, Kim SC, Imura T, Iwami M (1979) Si(LMM) Auger electron emission from Si alloys by keV Ar+ ion bombardment, new effect and application. Jpn J Appl Phys 18:1767–1772

    Article  CAS  Google Scholar 

  221. Braicovich L, Garner CM, Skeath PR, Su CY, Chye PW, Lindau I, Spicer WE (1979) Photoemission studies of the silicon-gold interface. Phys Rev B 20:5131–5141

    Article  CAS  Google Scholar 

  222. Chang CA, Ottaviani G (1984) Outdiffusion of Si through gold films: the effects of Si orientation, gold deposition techniques and rates, and annealing ambients. Appl Phys Lett 44:901–903

    Article  CAS  Google Scholar 

  223. Garozzo C, Filetti A, Bongiorn C, La Magna A, Simone F, Puglisi RA (2014) Room temperature evolution of gold nanodots deposited on silicon. Gold Bull 47:185–193

    Article  CAS  Google Scholar 

  224. Bal JK, Hazra S (2007) Interfacial role in room-temperature diffusion of Au into Si substrates. Phys Rev B 75:20541

    Article  CAS  Google Scholar 

  225. Hiraki A, Shimizu A, Iwami M, Narusawa T, Komiya S (1975) Metallic state of Si in Si noble metal vapor quenched alloys studied by Auger electron spectroscopy. Appl Phys Lett 26:57–60

    Article  CAS  Google Scholar 

  226. Kim JH, Yang G, Yang S, Weiss AH (2001) Study of the growth and stability of ultra-thin films of Au deposited on Si(100) and Si(111). Surf Sci 475:37–46

    Article  CAS  Google Scholar 

  227. Hiraki A, Iwami M (1974) Electronic structure of thin gold film deposited on silicon substrate studied by Auger electron and X-ray photoelectron spectroscopies. Jpn J Appl Phys 2(Supplement 2–2):749–752

    Article  Google Scholar 

  228. Prasad BLV, Stoeva SI, Sorensen CM, Klabunde KJ (2003) Digestive-ripening agents for gold nanoparticles: alternatives to thiols. Chem Mater 15:935–942

    Article  CAS  Google Scholar 

  229. Owens TM, Nicholson KT, Banaszak Holl MM, Suzer S (2002) Formation of alkylsilane based monolayers on gold. J Am Chem Soc 124:6800–6801

    Article  CAS  Google Scholar 

  230. Stoeva SI, Klabunde KJ, Sorensen CM, Dragieva I (2002) Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J Am Chem Soc 124:2305–2311

    Article  CAS  Google Scholar 

  231. Prasad BLV, Stoeva SI, Sorensen CM, Zaikovski V, Klabunde KJ (2003) Gold nanoparticles as catalysts for polymerization of alkylsilanes to siloxane nanowires, filaments, and tubes. J Am Chem Soc 125:10488–10489

    Article  CAS  Google Scholar 

  232. Metraux GS, Cao YC, Jin R, Mirkin CA (2003) Triangular nanoframes made of gold and silver. Nano Lett 3:519–522

    Article  CAS  Google Scholar 

  233. Sun Y, Xia Y (2004) Multiple-walled nanotubes made of metals. Adv Mater 16:264–268

    Article  CAS  Google Scholar 

  234. Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  235. Sun YG, Mayers B, Xia YN (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett 3:675–679

    Article  CAS  Google Scholar 

  236. Sun Y, Xia Y (2003) Gold and silver nanoparticles: A class of chromophores with colors tunable in the range form 400 to 750 nm. Analyst 128:686–691

    Article  CAS  Google Scholar 

  237. Sun Y, Mayers B, Herricks T, Xia Y (2003) Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3:955–960

    Article  CAS  Google Scholar 

  238. Rodriguez-Lopez JL, Montejano-Carrizales JM, Jose-Yacaman M (2006) Low dimensional non-crystallographic metallic nanostructures: HRTEM simulation, models and experimental results. Mod Phys Lett B 20:725–751

    Article  CAS  Google Scholar 

  239. Ozin GA, Mitchell SA (1983) Ligand-free metal clusters. Angew Chem Int Ed Engl 22:674–694

    Article  Google Scholar 

  240. Harbich W, Fedrigo S, Meyer F, Lindsay DM, Lignieres J, Rivoal JC, Kreisle D (1990) Deposition of mass selected silver clusters in rare gas matrices. J Chem Phys 93:8535–8543

    Article  CAS  Google Scholar 

  241. Rabin I, Schulze W, Ertl G (1999) On the structural transformation of the reconstructed Pt(100) in electrolyte solutions. Chem Phys Lett 312:394–398

    Article  CAS  Google Scholar 

  242. Ozin GA, Huber H (1978) Cryophotoclustering techniques for synthesizing very small, naked silver clusters Ag, of known size (where n = 2–5). Inorg Chem 17:155–163

    Article  CAS  Google Scholar 

  243. König L, Rabin I, Schulze W, Ertl G (1996) Chemiluminescence in the agglomeration of metal clusters. Science 274:1353–1355

    Article  Google Scholar 

  244. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  245. Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Faraday Trans 2(75):790–798

    Article  Google Scholar 

  246. Xu W, Zhang JX, Zhang LD, Hu XY, Cao XL (2009) Ultrasensitive detection using surface enhanced raman scattering from silver nanowire arrays in anodic alumina membranes. J Nanosci Nanotechnol 9:4812–4816

    Article  CAS  Google Scholar 

  247. Kneipp K, Wang Y, Dasari RR, Feld MS (1995) Approach to single-molecule detection using surface-enhanced resonance raman-scattering (serrs)—a study using rhodamine 6 g on colloidal silver. Appl Spectrosc 49:780–784

    Article  CAS  Google Scholar 

  248. Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science 275:1102–1106

    Article  CAS  Google Scholar 

  249. Kneipp J, Kneipp H, Kneipp K (2008) SERS-a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 37:1052–1060

    Article  CAS  Google Scholar 

  250. Emory SR, Haskins WE, Nie SM (1998) Direct observation of size-dependent optical enhancement in single metal nanoparticles. J Am Chem Soc 120:8009–8010

    Article  CAS  Google Scholar 

  251. Garrell RL (1989) Surface-enhanced Raman spectroscopy. Anal Chem 61:401A–411A

    Article  CAS  Google Scholar 

  252. Yaffe NR, Blanch EW (2008) Effects and anomalies that can occur in SERS spectra of biological molecules when using a wide range of aggregating agents for hydroxylamine-reduced and citrate-reduced silver colloids. Vib Spectrosc 48:196–201

    Article  CAS  Google Scholar 

  253. Cañamares MV, Garcia-Ramos JV, Sanchez-Cortes S, Castillejo M, Oujja M (2008) Comparative SERS effectiveness of silver nanoparticles prepared by different methods: a study of the enhancement factor and interfacial properties. J Colloid Interface Sci 326:103–109

    Article  CAS  Google Scholar 

  254. Leopold N, Lendl B (2003) A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J Phys Chem B 107:5723–5727

    Article  CAS  Google Scholar 

  255. Zou XQ, Dong SJ (2006) Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution. J Phys Chem B 110:21545–21550

    Article  CAS  Google Scholar 

  256. Leng WN, Woo HY, Vak D, Bazan GC, Kelley AM (2006) Surface-enhanced resonance raman and hyper-raman spectroscopy of water-soluble substituted stilbene and distyrylbenzene chromophores. J Raman Spectrosc 37:132–141

    Article  CAS  Google Scholar 

  257. Doering WE, Nie SM (2002) Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement. J Phys Chem B 106:311–314

    Article  CAS  Google Scholar 

  258. Bengter H, Tengroth C, Jacobsson SP (2005) New light on Ag-colloid preparation for surface-enhanced FT-Raman spectroscopy: the role of aggregation. J Raman Spectrosc 36:1015–1022

    Article  CAS  Google Scholar 

  259. Otto A, Bruckbauer A, Chen YX (2003) On the chloride activation in SERS and single molecule SERS. J Mol Struct 661–662:501–514

    Article  CAS  Google Scholar 

  260. Li WY, Camargo PHC, Lu XM, Xia YN (2009) Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett 9(1):485–490

    Article  CAS  Google Scholar 

  261. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309

    Article  CAS  Google Scholar 

  262. Yoshida H, Kuwauchi Y, Jinschek JR, Sun K, Tanaka S, Kohyama M, Shimada S, Haruta M, Takeda S (2012) Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335:317–319

    Article  CAS  Google Scholar 

  263. Wei Y, Liu J, Zhao Z, Duan A, Jiang G (2012) The catalysts of three-dimensionally ordered macroporous Ce1−x Zr x O2-supported gold nanoparticles for soot combustion: the metal–support interaction. J Catal 287:13–29

    Article  CAS  Google Scholar 

  264. Kim HY, Lee HM, Henkelman G (2012) CO oxidation mechanism on CeO2-Supported Au nanoparticles. J Am Chem Soc 134:1560–1570

    Article  CAS  Google Scholar 

  265. Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746

    Article  CAS  Google Scholar 

  266. Wu CG, Bein T (1994) Conducting carbon wires in ordered, nanometer-sized channels. Science 266:1013–1015

    Article  CAS  Google Scholar 

  267. Dick K, Dhanasekaran T, Zhang Z, Meisel D (2002) Size-dependent melting of silica-encapsulated gold nanoparticles. J Am Chem Soc 124:2312–2317

    Article  CAS  Google Scholar 

  268. Lim B, Kobayashi H, Yu T, Wang J, Kim MJ, Li ZY, Rycenga M, Xia Y (2010) Synthesis of Pd-Au bimetallic nanocrystals via controlled overgrowth. J Am Chem Soc 132:2506–2507

    Article  CAS  Google Scholar 

  269. Liang S, Liu XL, Yang YZ, Wang YL, Wang JH, Yang ZJ, Wang LB, Jia SF, Yu XF, Zhou L, Wang JB, Zeng J, Wang QQ, Zhang Z (2012) Symmetric and asymmetric Au-AgCdSe hybrid nanorods. Nano Lett 12:5281–5286

    Article  CAS  Google Scholar 

  270. Lombardi A, Grzelczak MP, Crut A, Maioli P, Pastoriza-Santos I, Liz-Marzán LM, Fatti N, Del Vallée F (2013) Optical response of individual Au-Ag@SiO2 heterodimers. ACS Nano 7:2522–2531

    Article  CAS  Google Scholar 

  271. Prucek R, Panáček A, Fargašová A, Ranc V, Mašek V, Kvítek L, Zbořil R (2011) Re-crystallization of silver nanoparticles in a highly concentrated NaCl environment-a new substrate for surface enhanced IR-visible Raman spectroscopy. Cryst Eng Comm 13:2242–2248

    Article  CAS  Google Scholar 

  272. Jensen T, Kelly L, Lazarides A, Schatz GC (1999) Electrodynamics of noble metal nanoparticles and nanoparticle clusters. J Cluster Sci 10:295–317

    Article  CAS  Google Scholar 

  273. Schneider S, Halbig P, Grau H, Nickel U (1994) Reproducible preparation of silver sols with uniform particle size for application in surface-enhanced raman spectroscopy. Photochem Photobiol 60:605–610

    Article  Google Scholar 

  274. Cobley CM, Rycenga M, Zhou F, Li ZY, Xia YN (2009) Etching and growth: an intertwined pathway to silver nanocrystals with exotic shapes. Angew Chem Int Ed 48:4824–4827

    Article  CAS  Google Scholar 

  275. Yang J, Zhang QB, Lee JY, Too HP (2007) Dissolution-recrystallization mechanism for the conversion of silver nanospheres to triangular nanoplates. J Colloid Interface Sci 308:157–161

    Article  CAS  Google Scholar 

  276. Henglein A, Linnert T, Mulvaney P (1990) Reduction of Ag+ in aqueous polyanion solution—some properties and reactions of long-lived oligomeric silver clusters and metallic silver particles. Ber Bunsen-Ges Phys Chem Chem Phys 94:1449–1457

    Article  CAS  Google Scholar 

  277. Michaels AM, Nirmal M, Brus LE (1999) Surface enhanced raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J Am Chem Soc 121:9932–9939

    Article  CAS  Google Scholar 

  278. Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903

    Article  CAS  Google Scholar 

  279. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nature Mater 3:482–488

    Article  CAS  Google Scholar 

  280. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  281. Millstone JE, Park S, Shuford KL, Qin L, Schatz GC, Mirkin CA (2005) Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc 127:5312–5313

    Article  CAS  Google Scholar 

  282. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649

    Article  CAS  Google Scholar 

  283. Li L, Wang Z, Huang T, Xie J, Qi L (2010) Porous gold nanobelts templated by metal–surfactant complex nanobelts. Langmuir 26:12330–12335

    Article  CAS  Google Scholar 

  284. Xiao J, Qi L (2011) Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale 3:1383–1396

    Article  CAS  Google Scholar 

  285. Fasciani C, Silvero MJ, Anghel MA, Argüello GA, Becerra MC, Scaiano JC (2014) Aspartame-stabilized gold–silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability. J Am Chem Soc 136:17394–17397

    Article  CAS  Google Scholar 

  286. McGilvray KL, Fasciani C, Bueno-Alejo CJ, Schwartz-Narbonne R, Scaiano JC (2012) Photochemical strategies for the seed-mediated growth of gold and gold–silver nanoparticles. Langmuir 28:16148–16155

    Article  CAS  Google Scholar 

  287. McGilvray KL, Decan MR, Wang D, Scaiano JC (2006) Facile photochemical synthesis of unprotected aqueous gold nanoparticles. J Am Chem Soc 128:15980–15981

    Article  CAS  Google Scholar 

  288. Scaiano JC, Billone P, Gonzalez CM, Maretti L, Marin ML, McGilvray KL, Yuan N (2009) Photochemical routes to silver and gold nanoparticles. Pure Appl Chem 81:635–647

    Article  CAS  Google Scholar 

  289. Sun Y, Xia Y (2004) Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J Am Chem Soc 126:3892–3901

    Article  CAS  Google Scholar 

  290. Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, Xia Y (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41:1587–1595

    Article  CAS  Google Scholar 

  291. Qian Z, Park SJ (2014) Silver seeds and aromatic surfactants facilitate the growth of anisotropic metal nanoparticles: gold triangular nanoprisms and ultrathin nanowires. Chem Mater 26:6172–6177

    Article  CAS  Google Scholar 

  292. Pud S, Kisner A, Heggen M, Belaineh D, Temirov R, Simon U, Offenhäusser A, Mourzina Y, Vitusevich S (2012) Features of transport in ultrathin gold nanowire structures. Small 9:846–852

    Article  CAS  Google Scholar 

  293. Straney PJ, Andolina CM, Millstone JE (2013) Seedless initiation as an efficient, sustainable route to anisotropic gold nanoparticles. Langmuir 29:4396–4403

    Article  CAS  Google Scholar 

  294. Njoki PN, Lim IIS, Mott D, Park HY, Khan B, Mishra S, Sujakumar R, Luo J, Zhong CJ (2007) Size correlation of optical and spectroscopic properties for gold nanoparticles. J Phys Chem C 111:14664–14669

    Article  CAS  Google Scholar 

  295. Zhi-Chuan X, Cheng-Min S, Cong-Wen X, Tian-Zhong Y, Huai-Ruo Z, Jian-Qi L, Hu-Lin L, Hong-Jun G (2007) Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles. Nanotechnology 18:115608

    Article  CAS  Google Scholar 

  296. Aherne D, Gara M, Kelly JM, Gun’ko YK (2010) From Ag nanoprisms to triangular AuAg nanoboxes. Adv Funct Mater 20:1329–1338

    Google Scholar 

  297. Zheng Y, Zeng J, Ruditskiy A, Liu M, Xia Y (2013) Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals. Chem Mater 26:22–33

    Article  CAS  Google Scholar 

  298. Personick ML, Langille MR, Wu J, Mirkin CA (2013) Synthesis of gold hexagonal bipyramids directed by planar-twinned silver triangular nanoprisms. J Am Chem Soc 135:3800–3803

    Article  CAS  Google Scholar 

  299. Aherne D, Ledwith DM, Gara M, Kelly JM (2008) Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv Funct Mater 18:2005–2016

    Article  CAS  Google Scholar 

  300. Langille MR, Personick ML, Zhang J, Mirkin CA (2011) Bottom-up synthesis of gold octahedra with tailorable hollow features. J Am Chem Soc 133:10414–10417

    Article  CAS  Google Scholar 

  301. Feng X, Li X, Shi H, Huang H, Wu X, Song W (2014) Highly accessible Pt nanodots homogeneously decorated on Au nanorods surface for sensing. Anal Chim Acta 852:37–44

    Article  CAS  Google Scholar 

  302. Ongartkit A, Ananta S, Srisombat L (2014) Preparation of Ag/Au/Pt nanoparticles and their catalytic properties. Chem Phys Lett 605:85–88

    Article  CAS  Google Scholar 

  303. Gao JX, Bender CM, Murphy CJ (2003) Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 19:9065–9070

    Article  CAS  Google Scholar 

  304. Wang S, Kristian N, Jiang S, Wang X (2009) Controlled synthesis of dendritic Au@Pt core-shell nanomaterials for use as an effective fuel cell electrocatalyst. Nanotechnology 20:25605

    Article  CAS  Google Scholar 

  305. Lohse SE, Burrows ND, Scarabelli L, Liz-Marzán LM, Murphy CJ (2014) Anisotropic noble metal nanocrystal growth: the role of halides. Chem Mater 26:34–43

    Article  CAS  Google Scholar 

  306. Sheikholeslami S, Jun YW, Jain PK, Alivisatos AP (2010) Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett 10:2655–2660

    Article  CAS  Google Scholar 

  307. Feng Y, He J, Wang H, Tay YY, Sun H, Zhu L, Chen H (2012) An unconventional role of ligand in continuously tuning of metal- metal interfacial strain. J Am Chem Soc 134:2004–2007

    Article  CAS  Google Scholar 

  308. Khanal BP, Pandey A, Li L, Lin Q, Bae WK, Luo H, Klimov VI, Pietryga JM (2012) Generalized synthesis of hybrid metal- semiconductor nanostructures tunable from the visible to the infrared. ACS Nano 6:3832–3840

    Article  CAS  Google Scholar 

  309. Gschneidtner TA, Fernandez YAD, Syrenova S, Westerlund F, Langhammer C, Moth-Poulsen K (2014) A versatile self-assembly strategy for the synthesis of shape-selected colloidal noble metal nanoparticle heterodimers. Langmuir 30:3041–3050

    Article  CAS  Google Scholar 

  310. Wu HL, Kuo CH, Huang MH (2010) Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures. Langmuir 26:12307–12313

    Article  CAS  Google Scholar 

  311. Becker R, Liedberg B, Käll PO (2010) CTAB promoted synthesis of Au nanorods-temperature effects and stability considerations. J Colloid Interface Sci 343:25–30

    Article  CAS  Google Scholar 

  312. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  313. Hou W, Cronin SB (2013) A review of surface plasmon resonance enhanced photocatalysis. Adv Funct Mater 23:1612–1619

    Article  CAS  Google Scholar 

  314. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130:1676–1680

    Article  CAS  Google Scholar 

  315. Liu Z, Hou W, Pavaskar P, Aykol M, Cronin SB (2011) Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett 11:1111–1116

    Article  CAS  Google Scholar 

  316. Ohko Y, Tatsuma T, Fujii T, Naoi K, Niwa C, Kubota Y, Fujishima A (2003) Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat Mater 2:29–31

    Article  CAS  Google Scholar 

  317. Tanahashi I, Iwagishi H, Chang G (2008) Localized surface plasmon resonance sensing properties of photocatalytically prepared Au/TiO2 films. Mater Lett 62:2714–2716

    Article  CAS  Google Scholar 

  318. Ohtani B, Okugawa Y, Nishimoto S, Kagiya T (1987) Photocatalytic activity of TiO2 powders suspended in aqueous silver nitrate solution-correlation with pH dependent surface structures. J Phys Chem 91:3550–3555

    Article  CAS  Google Scholar 

  319. Naoi K, Ohko Y, Tatsuma T (2004) TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior. J Am Chem Soc 126:3664–3668

    Article  CAS  Google Scholar 

  320. Doremus RH (1965) Optical properties of small silver particles. J Chem Phys 42:414–417

    Article  CAS  Google Scholar 

  321. Matsubara K, Kelly KL, Sakai N, Tatsuma T (2009) Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals. J Mater Chem 19:5526–5532

    Article  CAS  Google Scholar 

  322. Kazuma E, Matsubara K, Kelly KL, Sakai N, Tatsuma T (2009) Bi- and uniaxially oriented growth and plasmon resonance properties of anisotropic Ag nanoparticles on single crystalline TiO2 surfaces. J Phys Chem C 113:4758–4762

    Article  CAS  Google Scholar 

  323. Li D, Pan L, Li S, Liu K, Wu S, Peng W (2013) Controlled preparation of uniform TiO2-catalyzed silver nanoparticle films for surface-enhanced Raman scattering. J Phys Chem C 117:6861–6871

    Article  CAS  Google Scholar 

  324. Li S, Tao Q, Li D, Zhang Q (2014) Controlled anisotropic growth of Ag nanoparticles on oil-decorated TiO2 films with photocatalytic reduction method. J Mater Res 29:2497–2504

    Article  CAS  Google Scholar 

  325. Sakai Y, Tanabe I, Tatsuma T (2011) Orientation-selective removal of upright Ag nanoplates from a TiO2 film. Nanoscale 3:4101–4103

    Article  CAS  Google Scholar 

  326. Jin R, Cao YC, Hao E, Me GS, Schatz GC, Mirkin CA (2004) Controlling anisotropic nanoparticles growth through plasmon excitation. Science 425:487–490

    Google Scholar 

  327. Moores A, Goettmann F (2006) The plasmon band in noble metal nanoparticles: An introduction to theory and applications. New J Chem 30:1121–1132

    Article  CAS  Google Scholar 

  328. Ohring M (2002) Materials science of thin films, Deposition and structure. Academic Press, San Diego, USA

    Google Scholar 

  329. Zhang J, Huang F, Lin Z (2010) Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale 2:18–34

    Article  Google Scholar 

  330. Yin S, Huang F, Zhang J, Zheng J, Lin Z (2011) The effects of particle concentration and surface charge on the oriented attachment growth kinetics of CdTe nanocrystals in H2O. J Phys Chem C 115:10357–10364

    Article  CAS  Google Scholar 

  331. Li DS, Nielsen MH, Lee JRI, Frandsen C, Banfield JF, De Yoreo JJ (2012) Direction-specific interactions control crystal growth by oriented attachment. Science 336:1014–1018

    Article  CAS  Google Scholar 

  332. Viswanatha R, Santra PK, Dasgupta C, Sarma DD (2007) Growth mechanism of nanocrystals in solution: ZnO, a case study. Phys Rev Lett 98:255501

    Article  CAS  Google Scholar 

  333. Chookajorn T, Park M, Schuh CA (2015) Duplex nanocrystalline alloys: entropic nanostructure stabilization and a case study on W–Cr. J Mater Res 30:151–163

    Article  CAS  Google Scholar 

  334. Tanabe I, Matsubara K, Sakai N, Tatsuma T (2011) Photoelectrochemical and optical behavior of single upright Ag nanoplates on a TiO2 film. J Phys Chem C 115:1695–1701

    Article  CAS  Google Scholar 

  335. Tanabe I, Matsubara K, Standridge SD, Kazuma E, Kelly KL, Sakai N, Tatsuma T (2009) Photocatalytic growth and plasmon resonance-assisted photoelectrochemical toppling of upright Ag nanoplates on a nanoparticulate TiO2 film. Chem Commun 24:3621–3623

    Article  CAS  Google Scholar 

  336. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

  337. Beck FJ, Verhagen E, Mokkapati S, Polman, A Catchpole KR (2011) Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates. Opt Express 19:A146–A156

    Google Scholar 

  338. Hildebrandt P, Stockburger M (1984) Surface-enhanced resonance Raman-spectroscopy of rhodamine-6G adsorbed on colloidal silver. J Phys Chem 88:5935–5944

    Article  CAS  Google Scholar 

  339. Tao Q, Li S, Zhang QY, Kang DW, Yang JS, Qiu WW, Liu K (2014) Controlled growth of ZnO nanorods on textured silicon wafer and the application for highly effective and recyclable SERS substrate by decorating Ag nanoparticles. Mater Res Bull 54:6–12

    Article  CAS  Google Scholar 

  340. Garcia-Vidal FJ, Pendry JB (1996) Collective theory for surface enhanced Raman scattering. Phys Rev Lett 77:1163–1166

    Article  CAS  Google Scholar 

  341. Yang Y, Matsubara S, Xiong LM, Hayakawa T, Nogami M (2007) Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. J Phys Chem C 111:9095–9104

    Article  CAS  Google Scholar 

  342. Lakowicz JR, Geddes CD, Gryczynski I, Malicka J, Gryczynski Z, Aslan K, Lukomska J, Matveeva E, Zhang J, Badugu R, Huang JJ (2004) Advances in surface-enhanced fluorescence. J Fluoresc 14:425–441

    Article  CAS  Google Scholar 

  343. Lakowicz JR (2005) Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 337:171–194

    Article  CAS  Google Scholar 

  344. Lo LW, Koch CJ, Wilson DF (1996) Calibration of oxygen-dependent quenching of the phosphorescence of Pd-meso-tetra (4-carboxyphenyl) porphine: a phosphor with general application for measuring oxygen concentration in biological systems. Anal Biochem 236:153–160

    Article  CAS  Google Scholar 

  345. Vinogradov SA, Wilson DF (1994) Phosphorescence lifetime analysis with a quadratic programming algorithm for determining quencher distributions in heterogeneous systems. Biophys J 67:2048–2059

    Article  CAS  Google Scholar 

  346. Cheng SH, Lee CH, Yang CS, Tseng FG, Mou CY, Lo LW (2009) Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: potential cancer theranostics. J Mater Chem 19:1252–1257

    Article  CAS  Google Scholar 

  347. Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903

    Article  CAS  Google Scholar 

  348. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47:8438–8441

    Article  CAS  Google Scholar 

  349. Lopez T, Recillas S, Guevara P, Sotelo J, Alvarez M, Odriozola JA (2008) Pt/TiO2 brain biocompatible nanoparticles: GBM treatment using the C6 model in Wistar rats. Acta Biomater 4:2037–2044

    Article  CAS  Google Scholar 

  350. Fu GF, Vary PS, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889–8898

    Article  CAS  Google Scholar 

  351. Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69

    Article  CAS  Google Scholar 

  352. Yamaguchi K, Sugiyama T, Kato S, Kondo Y, Ageyama N, Kanekiyo M, Iwata M, Koyanagi Y, Yamamoto N, Honda M (2008) A novel CD4-conjugated ultraviolet light-activated photocatalyst inactivates HIV-1 and SIV efficiently. J Med Virol 80:1322–1331

    Article  CAS  Google Scholar 

  353. Yamaguchi S, Kobayashi H, Narita T, Kanehira K, Sonezaki S, Kubota Y, Terasaka S, Iwasaki Y (2010) Novel photodynamic therapy using water-dispersed TiO2-polyethylene glycol compound: evaluation of antitumor effect on glioma cells and spheroids in vitro. Photochem Photobiol 86:964–971

    Article  CAS  Google Scholar 

  354. Seo JW, Chung H, Kim MY, Lee J, Choi IH, Cheon J (2007) Development of water soluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment. Small 3:850–853

    Article  CAS  Google Scholar 

  355. Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J, Ito S (2002) A patterned TiO2(anatase)/TiO2(rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. Angew Chem Int Ed 41:2811–2813

    Article  CAS  Google Scholar 

  356. Liu L, Miao P, Xu Y, Tian Z, Zou Z, Li G (2010) Study of Pt/TiO2 nanocomposite for cancer-cell treatment. J Photochem Photobiol B 98:207–210

    Article  CAS  Google Scholar 

  357. Kasarevic-Popovic Z, Behar D, Rabani J (2004) Role of excess electrons in TiO2 nanoparticles coated with Pt in reduction reactions studied in radiolysis of aqueous solutions. J Phys Chem B 108:20291–20295

    Article  CAS  Google Scholar 

  358. Xu J, Chen ZD, Sun Y, Chen CM, Jiang ZY (2008) Photocatalytic killing effect of gold-doped TiO2 nanocomposites on human colon carcinoma LoVo cells. Acta Chim Sin 66:1163–1167

    CAS  Google Scholar 

  359. Lee CH, Meteer J, Narayanan V, Kan EC (2005) Self-assembly of metal nanocrystals on ultrathin oxide for nonvolatile memory applications. J Electron Mater 34:1–11

    Article  CAS  Google Scholar 

  360. Gong XQ, Selloni A, Dulub O, Jacobson P, Diebold U (2008) Small Au and Pt clusters at the anatase TiO2(101) surface: behavior at terraces, steps, and surface oxygen vacancies. J Am Chem Soc 130:370–381

    Article  CAS  Google Scholar 

  361. Rozhkova EA, Ulasov I, Lai B, Dimitrijevic NM, Lesniak MS, Rajh T (2009) A high-performance nanobio photocatalyst for targeted brain cancer therapy. Nano Lett 9:3337–3342

    Article  CAS  Google Scholar 

  362. Rozhkova EA (2011) Nanoscale materials for tackling brain cancer: recent progress and outlook. Adv Mater 23:H136–H150

    Article  CAS  Google Scholar 

  363. Dimitrijevic NM, Rozhkova EA, Rajh T (2009) Dynamics of localized charges in dopamine-modified TiO(2) and their effect on the formation of reactive oxygen species. J Am Chem Soc 131:2893–2899

    Article  CAS  Google Scholar 

  364. Dimitrijevic NM, Saponjic Z, Rabatic BM, Rajh T (2005) Assembly and charge transfer in hybrid TiO(2) architectures using biotin-avidin as a connector. J Am Chem Soc 127:1344–1345

    Article  CAS  Google Scholar 

  365. de la Garza L, Saponjic ZV, Dimitrijevic NM, Thurnauer MC, Rajh T (2006) Surface states of titanium dioxide nanoparticles modified with enediol ligands. J Phys Chem B 110:680–686

    Article  CAS  Google Scholar 

  366. Lopez T, Figueras F, Manjarrez J, Bustos J, Alvarez M, Silvestre-Albero J, Rodriguez-Reinoso F, Martinez-Ferre A, Martinez E (2010) Catalytic nanomedicine: a new field in antitumor treatment using supported platinum nanoparticles. In vitro DNA degradation and in vivo tests with C6 animal model on Wistar rats. Eur J Med Chem 45:1982–1990

    Article  CAS  Google Scholar 

  367. Patolsky F, Zheng G, Lieber CM (2006) Nanowire sensors for medicine and the life sciences. Nanomedicine 1:51–65

    Article  CAS  Google Scholar 

  368. Tian BZ, Cohen-Karni T, Qing QA, Duan XJ, Xie P, Lieber CM (2010) Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329:830–834

    Article  CAS  Google Scholar 

  369. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301

    Article  CAS  Google Scholar 

  370. Stern E, Vacic A, Rajan NK, Criscione JM, Park J, Ilic BR, Mooney DJ, Reed MA, Fahmy TM (2010) Label-free biomarker detection from whole blood. Nat Nanotechnol 5:138–142

    Article  CAS  Google Scholar 

  371. Chi X, Huang D, Zhao Z, Zhou Z, Yin Z, Gao J (2012) Nanoprobes for in vitro diagnostics of cancer and infectious diseases. Biomaterials 33:189–206

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignác Capek .

Glossary

Antibody (Ab )

is a large, Y-shaped protein produced mainly by plasma cells that is used by the immune system to identify and neutralize pathogens such as bacteria and viruses . The antibody recognizes a unique molecule of the harmful agent, called an antigen, via the Fab’s variable region. Each tip of the “Y” of an antibody contains a paratope (analogous to a lock) that is specific for one particular epitope (similarly analogous to a key) on an antigen, allowing these two structures to bind together with precision. Using this binding mechanism, an antibody can tag a microbe or an infected cell for attack by other parts of the immune system, or can neutralize its target directly (e.g., by blocking a part of a microbe that is essential for its invasion and survival). Depending on the antigen , the binding may impede the biological process causing the disease or may activate macrophages to destroy the foreign substance. The ability of an antibody to communicate with the other components of the immune system is mediated via its Fc region (located at the base of the “Y”), which contains a conserved glycosylation site involved in these interactions. The production of antibodies is the main function of the humoral immune system.

Antigen

is a molecule capable of inducing an immune response on the part of the host organism, though sometimes antigens can be part of the host itself. Each antibody is specifically produced by the immune system to match an antigen after cells in the immune system come into contact with it; this allows a precise identification of the antigen and the initiation of a tailored response. The antibody is said to “match” the antigen in the sense that it can bind to it thanks to adaptations performed to a region of the antibody; because of this, many different antibodies can be produced, with specificity to bind many different antigens while sharing the same basic structure.

Apoptosis

is a process of programmed cell death that occurs in multicellular organisms . Biochemical events lead to characteristic cell changes (morphology) and death. These changes include blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation, chromosomal DNA fragmentation, and global mRNA decay. Between 50 and 70 billion cells die each day due to apoptosis in the average human adult. Apoptosis is a highly regulated and controlled process that confers advantages during an organism’s lifecycle. Apoptosis produces cell fragments called apoptotic bodies that phagocytic cells are able to engulf and quickly remove before the contents of the cell can spill out onto surrounding cells and cause damage to the neighboring cells.

Astrocytes

are characteristic star-shaped glial cells in the brain and spinal cord. They perform many functions, including biochemical support of endothelial cells that form the blood–brain barrier , provision of nutrients to the nervous tissue, maintenance of extracellular ion balance, and a role in the repair and scarring process of the brain and spinal cord following traumatic injuries.

Cancer cells

are cells that divide relentlessly, forming solid tumors or flooding the blood with abnormal cells. Cell division is a normal process used by the body for growth and repair. A parent cell divides to form two daughter cells, and these daughter cells are used to build new tissue, or to replace cells that have died as a result of aging or damage. Healthy cells stop dividing when there is no longer a need for more daughter cells, but cancer cells continue to produce copies. They are also able to spread from one part of the body to another in a process known as metastasis.

Carcinoembryonic antigen (CEA )

describe a set of highly related glycoproteins involved in cell adhesion. CEA is usually present only at very low levels in the blood of healthy adults. However, the serum levels are raised in some types of cancer, which means that it can be used as a tumor marker in clinical tests . Serum levels can also be elevated in heavy smokers. CEA are glycosyl phosphatidyl inositol (GPI) cell-surface-anchored glycoproteins whose specialized sialofucosylated glycoforms serve as functional colon carcinoma L-selectin and E-selectin ligands, which may be critical to the metastatic dissemination of colon carcinoma cells.

Central nervous system (CNS )

is the part of the nervous system consisting of the brain and spinal cord. The central nervous system is so named because it integrates information it receives from and coordinates and influences the activity of all parts of the bodies of bilaterally symmetric animals—that is, all multicellular animals except sponges and radially symmetric animals such as jellyfish—and it contains the majority of the nervous system.

Chemotherapy

as a treatment of cancer often relies on the ability of cytotoxic agents to kill or damage cells which are reproducing; this preferentially targets rapidly dividing cancer cells. This cancer treatment uses one or more anticancer drugs (chemotherapeutic agents) as part of a standardized chemotherapy regimen. It may be given with a curative intent (which almost always involves combinations of drugs), or it may aim to prolong life or to reduce symptoms (palliative chemotherapy). Chemotherapy is one of the major categories of medical oncology (the medical discipline specifically devoted to pharmacotherapy for cancer).

Cytotoxicity

is the quality of being toxic to cells. Examples of toxic agents are an immune cell or some types of venom, e.g., from the puff adder (Bitis arietans) or brown recluse spider (Loxosceles reclusa).

Dopamine (3,4-dihydroxyphenethylamine)

is an organic chemical of the catecholamine and phenethylamine families that plays several important roles in the brain and body. It is an amine synthesized by removing a carboxyl group from a molecule of its precursor chemical l-DOPA, which is synthesized in the brain and kidneys. Dopamine is also synthesized in plants and most multicellular animals. In the brain, dopamine functions as a neurotransmitter—a chemical released by neurons (nerve cells) to send signals to other nerve cells. The brain includes several distinct dopamine pathways, one of which plays a major role in reward-motivated behavior. Most types of reward increase the level of dopamine in the brain, and many addictive drugs increase dopamine neuronal activity. Other brain dopamine pathways are involved in motor control and in controlling the release of various hormones. These pathways and cell groups form a dopamine system which is neuromodulatory.

Doxorubicin

is a medication used in cancer chemotherapy. It is commonly used in the treatment of a wide range of cancers, including hematological malignancies (blood cancers, like leukemia and lymphoma), many types of carcinoma (solid tumors), and soft tissue sarcomas . It is often used in combination chemotherapy as a component of various chemotherapy regimens.

Imaging agents

are chemicals designed to allow clinicians to improve the imaging of specific organs, tissues, diseases, and physiological functions.

Interleukin (IL ),

any of a group of naturally occurring proteins that mediate communication between cells. Interleukins regulate cell growth, differentiation, and motility. They are particularly important in stimulating immune responses, such as inflammation . Interleukins are a group of cytokines (secreted proteins and signal molecules) that were first seen to be expressed by white blood cells (leukocytes). The interleukin-13 receptor (IL13R) is a type I cytokine receptor, binding Interleukin-13. It consists of two subunits, encoded by IL13RA1 and IL4R, respectively. These two genes encode the proteins IL-13Rα1 and IL-4Rα. These form a dimer with IL-13 binding to the IL-13Rα1 chain, and IL-4Rα stabilizes this interaction. This IL-13 receptor can also instigate IL-4 signaling. In both cases, this occurs via activation of the Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) pathway, resulting in phosphorylation of STAT6. Phosphorylated STAT6 dimerises and acts as a transcription factor activating many genes.

Monoclonal antibodies (mAb or moAb)

are antibodies that are made by identical immune cells that are all clones of a unique parent cell. Monoclonal antibodies can have monovalent affinity, in that they bind to the same epitope (the part of an antigen that is recognized by the antibody). In contrast, polyclonal antibodies bind to multiple epitopes and are usually made by several different plasma cell (antibody secreting immune cell) lineages. Bispecific monoclonal antibodies can also be engineered, by increasing the therapeutic targets of one single monoclonal antibody to two epitopes. Given almost any substance, it is possible to produce monoclonal antibodies that specifically bind to that substance; they can then serve to detect or purify that substance. This has become an important tool in biochemistry, molecular biology, and medicine. Monoclonal antibodies (mAbs) have become a successful therapeutic drug class due to their specificity, efficacy, and the low level of adverse effects they induce. They are single-targeting molecules meaning that all antibodies in a drug product are identical and therefore bind specifically to only one binding site on one target. Such single-targeting molecules offer specificity but not diversity, which may help explain why a recombinant mAb drug is less likely to completely neutralize or eliminate targets involved in disease, and consequently why mAbs may provide limited clinical benefit.

Photodynamic therapy (PDT )

is a clinically approved and minimally invasive therapy that uses a nontoxic light-sensitive compound (photosynthesizer ) that is readily absorbed by abnormal cells. When exposed to a specific wavelength of light, the photosynthesizer is activated to produce changes in endothelial cell integrity that ultimately produce vascular disruption .

Prostate-specific antigen (PSA ),

also known as gamma-seminoprotein or kallikrein-3 (KLK3), is a glycoprotein enzyme encoded in humans by the KLK3 gene. PSA is a member of the kallikrein-related peptidase family and is secreted by the epithelial cells of the prostate gland. PSA is present in small quantities in the serum of men with healthy prostates, but is often elevated in the presence of prostate cancer or other prostate disorders.

Therapeutic agent

is a structure of natural or synthetic origin used for its specific action against disease, usually against infection. A therapeutic effect is a consequence of a medical treatment of any kind, the results of which are judged to be desirable and beneficial.

Therapy agents

are used to modify the relationship between tumor and host, altering the host’s biological response to tumor cells, with a resultant therapeutic effect. Most therapy agents are designed to activate the patient’s immune system and induce it to attack cancer cells. Common biological agents that have been approved for use in treating specific types of cancer are interferons , monoclonal antibodies, interleukins, tumor vaccines , etc.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Capek, I. (2017). Hard Template-Directed Synthesis. In: Noble Metal Nanoparticles. Nanostructure Science and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56556-7_5

Download citation

Publish with us

Policies and ethics