Skip to main content

Photoaffinity Labeling in Drug Discovery Research

  • Chapter
  • First Online:
Photoaffinity Labeling for Structural Probing Within Protein

Abstract

Photoaffinity labeling (PAL) is a method that forms an irreversible covalent bond between photoreactive ligands and neighboring amino acids under the irradiation of light. PAL is utilized in the pharmacological and biochemical identification of ligand target molecules and ligand binding sites. Recent technological advances in mass spectrometry have enabled measurement of the mass of intact proteins and peptides with extremely high accuracy. Mass spectrometry has also been adopted in PAL to analyze labeled proteins and identify crosslink amino acid, although this application has been mostly for soluble proteins and reports on the successful identification of crosslink amino acids in GPCRs by mass spectrometry are scarce. In this chapter, we describe in detail our PAL technique that determines crosslink amino acid using the human adenosine A2A receptor as a representative class A GPCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Jaroudi W, Iskandrian AE (2009) Regadenoson: a new myocardial stress agent. J Am Coll Cardiol 54:1123–1130. doi:10.1016/j.jacc.2009.04.089

    Article  PubMed  Google Scholar 

  • Baraldi PG, Cacciari B, Spalluto G et al (1996) Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives: potent and selective A2A adenosine antagonists. J Med Chem 39:1164–1171. doi:10.1021/jm950746l

    Article  CAS  PubMed  Google Scholar 

  • Brunner J (1993) New photolabeling and crosslinking methods. Annu Rev Biochem 62:483–514. doi:10.1146/annurev.bi.62.070193.002411

  • Chen J-F, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets—what are the challenges? Nat Rev Drug Discov 12:265–286. doi:10.1038/nrd3955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu ML, Tsang C, Grihalde N, MacWilliams MP (2008) Over-expression, solubilization, and purification of G protein-coupled receptors for structural biology. Comb Chem High Throughput Screen 11:439–462. doi:10.2174/138620708784911456

    Article  CAS  PubMed  Google Scholar 

  • Fishman P, Cohen S (2016) The A3 adenosine receptor (A3AR): therapeutic target and predictive biological marker in rheumatoid arthritis. Clin Rheumatol 35:2359–2362. doi:10.1007/s10067-016-3202-4

    Article  PubMed  Google Scholar 

  • Fraser NJ (2006) Expression and functional purification of a glycosylation deficient version of the human adenosine 2a receptor for structural studies. Protein Expr Purif 49:129–137. doi:10.1016/j.pep.2006.03.006

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Ijzerman AP, Jacobson KA et al (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Ijzerman AP, Jacobson KA et al (2011) International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors-an update. Pharmacol Rev 63:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, Paralogon Groups, and fingerprints. Mol Pharmacol 63:1256

    Article  CAS  PubMed  Google Scholar 

  • Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21:90–113. doi:10.1210/edrv.21.1.0390

    Article  CAS  PubMed  Google Scholar 

  • Glukhova A, Thal DM, Nguyen AT et al (2017) Structure of the Adenosine A1 Receptor Reveals the Basis for Subtype Selectivity. Cell 168:867–877.e13. doi:10.1016/j.cell.2017.01.042

  • González-Calero G, Cubero A, Klotz K-N (1992) G-protein-coupled A1 adenosine receptors in coated vesicles of mammalian brain: characterization by radioligand binding and photoaffinity labelling. Cell Signal 4:737–745. doi:10.1016/0898-6568(92)90055-D

    Article  PubMed  Google Scholar 

  • Grunbeck A, Sakmar TP (2013) Probing G protein-coupled receptor—ligand interactions with targeted photoactivatable cross-linkers. Biochemistry 52:8625–8632. doi:10.1021/bi401300y

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Pan AC, Dror RO et al (2016) Molecular basis of ligand dissociation from the adenosine A2A receptor. Mol Pharmacol 89:485–491

    Google Scholar 

  • Hamouda AK, Jayakar SS, Chiara DC, Cohen JB (2014) Photoaffinity labeling of nicotinic receptors: diversity of drug binding sites! J Mol Neurosci 53:480–486. doi:10.1007/s12031-013-0150-1

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Hatanaka Y (2008) Recent progress in diazirine-based photoaffinity labeling. Eur J Org Chem 2008(15):2513–2523. doi:10.1002/ejoc.200701069

    Article  Google Scholar 

  • Hatanaka Y (2015) Development and leading-edge application of innovative photoaffinity labeling. Chem Pharm Bull 63:1–12. doi:10.1248/cpb.c14-00645

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka Y, Sadakane Y (2002) Photoaffinity labeling in drug discovery and developments: chemical gateway for entering proteomic frontier. Curr Top Med Chem 2:271–288. doi:10.2174/1568026023394182

    Article  CAS  PubMed  Google Scholar 

  • Hindi S, Deng H, James L, Kawamura A (2006) Selective photolabeling of Lck kinase in complex proteome. Bioorg Med Chem Lett 16:5625–5628. doi:10.1016/j.bmcl.2006.08.023

    Article  CAS  PubMed  Google Scholar 

  • Isberg V, Mordalski S, Munk C et al (2016) GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res 44:D356–D364. doi:10.1093/nar/gkv1178

    Article  CAS  PubMed  Google Scholar 

  • Jaakola VP, Griffith MT, Hanson MA et al (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jazayeri A, Dias JM, Marshall FH (2015) From G protein-coupled receptor structure resolution to rational drug design. J Biol Chem 290:19489–19495. doi:10.1074/jbc.R115.668251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kecskés M, Kumar TS, Yoo L et al (2010) Novel Alexa Fluor-488 labeled antagonist of the A2A adenosine receptor: application to a fluorescence polarization-based receptor binding assay. Biochem Pharmacol 80:506–511. doi:10.1016/j.bcp.2010.04.027

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J, Wess J, van Rhee AM et al (1995) Site-directed mutagenesis identifies residues involved in ligand recognition in the human A2a adenosine receptor. J Biol Chem 270:13987

    Google Scholar 

  • Kumar TS, Mishra S, Deflorian F et al (2011) Molecular probes for the A2A adenosine receptor based on a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine scaffold. Bioorg Med Chem Lett 21:2740–2745. doi:10.1016/j.bmcl.2010.11.082

    Article  CAS  PubMed  Google Scholar 

  • Lee S-M, Booe JM, Pioszak AA (2015) Structural insights into ligand recognition and selectivity for classes A, B, and C GPCRs. Eur J Pharmacol 763:196–205. doi:10.1016/j.ejphar.2015.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeRiche T, Skorey K, Roy P et al (2004) Using mass spectrometry to study the photo-affinity labeling of protein tyrosine phosphatase 1B. Int J Mass Spectrom 238:99–106. doi:10.1016/j.ijms.2003.11.023

    Article  CAS  Google Scholar 

  • Moss SM, Jayasekara PS, Paoletta S et al (2014) Structure-based design of reactive nucleosides for site-specific modification of the A2A adenosine receptor. ACS Med Chem Lett 5:1043–1048. doi:10.1021/ml5002486

  • Muranaka H, Momose T, Handa C et al (2017) Photoaffinity labeling of the human A2A Adenosine Receptor and cross-link Position Analysis by Mass Spectrometry. ACS Med Chem Lett 8:660–665. doi:10.1021/acsmedchemlett.7b00138

  • Myers JS, Sall KN, DuBiner H et al (2016) A dose-escalation study to evaluate the safety, tolerability, pharmacokinetics, and efficacy of 2 and 4 weeks of twice-daily ocular Trabodenoson in adults with ocular hypertension or primary open-angle glaucoma. J Ocul Pharmacol Ther 32:555–562. doi:10.1089/jop.2015.0148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolovska-Coleska Z, Wang R, Fang X et al (2004) Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal Biochem 332:261–273. doi:10.1016/j.ab.2004.05.055

    Article  CAS  PubMed  Google Scholar 

  • Olah ME, Stiles GL (2000) The role of receptor structure in determining adenosine receptor activity. Pharmacol Ther 85:55–75. doi:10.1016/S0163-7258(99)00051-0

    Article  CAS  PubMed  Google Scholar 

  • Patel A, Craig RH, Daluge SM, Linden J (1988) 125I-BW-A844U, an antagonist radioligand with high affinity and selectivity for adenosine A1 receptors, and 125I-azido-BW-A844U, a photoaffinity label. Mol Pharmacol 33:585

    CAS  PubMed  Google Scholar 

  • Piersen CE, True CD, Wells JN (1994) 125I-2-[4-[2-[2-[(4-azidophenyl)methylcarbonylamino] ethylaminocarbonyl]ethyl]phenyl] ethylamino-5′-N-ethylcarboxamidoadenosine labels transmembrane span V of the A2a adenosine receptor. Mol Pharmacol 45:871–877

    CAS  PubMed  Google Scholar 

  • Pinna A (2014) Adenosine A2A receptor antagonists in Parkinson’s disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs 28:455–474. doi:10.1007/s40263-014-0161-7

  • Rask-Andersen M, Almén MS, Schiöth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10:579–590. doi:10.1038/nrd3478. http://www.nature.com/nrd/journal/v10/n8/suppinfo/nrd3478_S1.html

    Article  CAS  PubMed  Google Scholar 

  • Redenti S, Ciancetta A, Pastorin G et al (2016) Pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidines and structurally simplified analogs. Chemistry and SAR profile as adenosine receptor antagonists. Curr Top Med Chem 16:3224–3257. doi:10.2174/1568026616666160506145831

    Article  CAS  PubMed  Google Scholar 

  • Robinette D, Neamati N, Tomer KB, Borchers CH (2006) Photoaffinity labeling combined with mass spectrometric approaches as a tool for structural proteomics. Expert Rev Proteomics 3:399–408. doi:10.1586/14789450.3.4.399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rong Y, Arbabian M, Thiriot DS et al (1999) Probing the salmeterol binding site on the β 2-adrenergic receptor using a novel photoaffinity ligand, [125I] iodoazidosalmeterol. Biochemistry 38:11278–11286

    Article  CAS  PubMed  Google Scholar 

  • Rosa M, Bech-Serra JJ, Canals F et al (2015) Optimized proteomic mass spectrometry characterization of recombinant human μ-opioid receptor functionally expressed in Pichia pastoris cell lines. J Proteome Res 14:3162–3173. doi:10.1021/acs.jproteome.5b00104

    Article  CAS  PubMed  Google Scholar 

  • Shoichet BK, Kobilka BK (2012) Structure-based drug screening for G-protein-coupled receptors. Trends Pharmacol Sci 33:268–272. doi:10.1016/j.tips.2012.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shonberg J, Kling RC, Gmeiner P, Löber S (2015) GPCR crystal structures: medicinal chemistry in the pocket. Bioorg Med Chem 23:3880–3906. doi:10.1016/j.bmc.2014.12.034

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Thornton ER, Westheimer FH (1962) The photolysis of diazoacetylchymotrypsin. J Biol Chem 237:PC3006–PC3008

    CAS  Google Scholar 

  • Skorey K, Waddleton D, Therien M, Leriche T (2006) Enzyme occupancy measurement of intracellular protein tyrosine phosphatase 1B using photoaffinity probes. Anal Biochem 349:49–61. doi:10.1016/j.ab.2005.11.018

    Article  CAS  PubMed  Google Scholar 

  • Stemmer SM, Benjaminov O, Medalia G et al (2013) CF102 for the treatment of hepatocellular carcinoma: a phase I/II, open-label, dose-escalation study. Oncologist 18:25–26. doi:10.1634/theoncologist.2012-0211

    Article  PubMed  PubMed Central  Google Scholar 

  • Terman BI, Insel PA (1986) Photoaffinity labeling of α 1-adrenergic receptors of rat heart. J Biol Chem 261:5603–5609

    CAS  PubMed  Google Scholar 

  • Todde S, Moresco RM, Simonelli P et al (2000) Design, radiosynthesis, and biodistribution of a new potent and selective ligand for in vivo imaging of the adenosine A2A receptor system using positron emission tomography. J Med Chem 43:4359–4362. doi:10.1021/jm0009843

    Article  CAS  PubMed  Google Scholar 

  • Tomizawa M, Maltby D, Medzihradszky KF et al (2007) Defining nicotinic agonist binding surfaces through photoaffinity labeling. Biochemistry 46:8798–8806. doi:10.1021/bi700667v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomizawa M, Talley TT, Park JF et al (2009) Nicotinic agonist binding site mapped by methionine- and tyrosine-scanning coupled with azidochloropyridinyl photoaffinity labeling. J Med Chem 52:3735–3741. doi:10.1021/jm900153c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trnka MJ, Doneanu CE, Trager WF (2006) Photoaffinity labeling of P450Cam by an imidazole-tethered benzophenone probe. Arch Biochem Biophys 445:95–107. doi:10.1016/j.abb.2005.10.014

    Article  CAS  PubMed  Google Scholar 

  • Whitelegge JP (2009) HPLC and mass spectrometry of integral membrane proteins. In: Walker JM (ed) Protein protocals handbook. Humana Press, Totowa, NJ, pp 1149–1166

    Chapter  Google Scholar 

  • Wu Z, Ruoho AE (2000) A high-affinity fluorenone-based β 2-adrenergic receptor antagonist with a photoactivatable pharmacophore. Biochemistry 39:13044–13052. doi:10.1021/bi001342k

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Thiriot DS, Ruoho AE (2001) Tyr199 in transmembrane domain 5 of the β 2-adrenergic receptor interacts directly with the pharmacophore of a unique fluorenone-based antagonist. Biochemistry 354:485−491

    Google Scholar 

  • Yip GMS, Chen Z-W, Edge CJ et al (2013) A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nat Chem Biol 9:715–720. doi:10.1038/nchembio.1340. http://www.nature.com/nchembio/journal/v9/n11/abs/nchembio.1340.html#supplementary-information

  • Yuan G, Gedeon NG, Jankins TC, Jones GB (2015) Novel approaches for targeting the adenosine A2A receptor. Expert Opin Drug Discovery 10:63–80. doi:10.1517/17460441.2015.971006

    Article  CAS  Google Scholar 

  • Zvonok N, Yaddanapudi S, Williams J et al (2007) Comprehensive proteomic mass spectrometric characterization of human cannabinoid CB2 receptor. J Proteome Res 6:2068–2079. doi:10.1021/pr060671h

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ichio Shimada (Tokyo University, Japan) for providing the cDNA of the hA2AAR and his technical advice on protein production. We thank Yasumaru Hatanaka (Toyama University, Japan) for his advice on PAL experiments. We warmly thank Toshiki Honma for FP data analysis, Shigeru Yonekubo for HPLC analyses, and Yoshinori Nonaka for NMR measurements. We also thank Kosuke Okazaki (Japan Agency for Medical Research and Development, AMED, Japan) for his insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Muranaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Muranaka, H., Momose, T., Handa, C., Ozawa, T. (2017). Photoaffinity Labeling in Drug Discovery Research. In: Hatanaka, Y., Hashimoto, M. (eds) Photoaffinity Labeling for Structural Probing Within Protein. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56569-7_12

Download citation

Publish with us

Policies and ethics