Skip to main content

Tag-Creation Approaches for Highly Efficient Profiling of Interacting Proteins and Domains

  • Chapter
  • First Online:
Photoaffinity Labeling for Structural Probing Within Protein

Abstract

Diazirine-based photoaffinity labeling is recognized as one of the most reliable methods for identification of biomolecular interactions because of its excellent chemical and physical properties. To avoid time-consuming steps in the analysis of a tiny amount of labeled product, functionalization of photoprobe should be an essential subject in this method. However, addition of functions often affects affinity of bioactive molecule. In this chapter, multifunctional diazirine-based photocross-linkers and their strategies for rapid target protein profiling of bioactive molecules are described, especially tagging methods after cross-linking including post-labeling using cleavable function, tandem labeling using clickable function, and fluorogenic labeling. Further, a unique target-visualization strategy is presented for facile identification of labeled site within protein using isotope-coded fluorescent tag, which can easily distinguish the target from the enormous range of biomolecules in analytical process using LC-MS/MS. Without any chemical treatments, a coumarin tag is photochemically generated on ligand-interacting surface of protein through structural change from nonfluorescent photocross-linker unit with accompanying cleavage of ligand molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addona GH, Husain SS, Stehle T, Miller KW (2002) Geometric isomers of a photoactivable general anesthetic delineate a binding site on adenylate kinase. J Biol Chem 277:25685–25691

    Article  CAS  PubMed  Google Scholar 

  • Ballell L, van Scherpenzeel M, Buchalova K, Liskamp RM, Pieters RJ (2006) A new chemical probe for the detection of the cancer-linked galectin-3. Org Biomol Chem 4:4387–4394

    Article  CAS  PubMed  Google Scholar 

  • Beatty KE, Szychowski J, Fisk JD, Tirrell DA (2011) A BODIPY-cyclooctyne for protein imaging in live cells. ChembioChem 12:2137−2139

    Article  PubMed Central  Google Scholar 

  • Bell JL, Haak AJ, Wade SM, Sun Y, Neubig RR, Larsen SD (2013) Design and synthesis of tag-free photoprobes for the identification of the molecular target for CCG-1423, a novel inhibitor of the Rho/MKL1/SRF signaling pathway. Beilstein J Org Chem 9:966–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blizzard RJ, Backus DR, Brown W, Bazewicz CG, Li Y, Mehl RA (2015) Ideal bioorthogonal reactions using a site-specifically encoded tetrazine amino acid. J Am Chem Soc 137:10044–10047

    Article  CAS  PubMed  Google Scholar 

  • Boutureira O, Bernardes GJ (2015) Advances in chemical protein modification. Chem Rev 115:2174–2195

    Article  CAS  PubMed  Google Scholar 

  • Burkard N, Bender T, Westmeier J, Nordmann C, Huss M, Wieczorek H, Grond S, von Zezschwitz P (2010) New fluorous photoaffinity labels (F-PAL) and their application in V-ATPase inhibition studies. Eur J Org Chem 2010:2176–2181

    Article  Google Scholar 

  • Chan EW, Chattopadhaya S, Panicker RC, Huang X, Yao SQ (2004) Developing photoactive affinity probes for proteomic profiling: hydroxamate-based probes for metalloproteases. J Am Chem Soc 126:14435–14446

    Article  CAS  PubMed  Google Scholar 

  • Chin JW, Schultz PG (2002) In vivo photocrosslinking with unnatural amino acid mutagenesis. ChembioChem 3(11):1135–1137

    Article  CAS  PubMed  Google Scholar 

  • Chin JW, Martin AB, King DS, Wang L, Schultz PG (2002a) Addition of a photocrosslinking amino acid to the genetic code of Escherichiacoli. Proc Natl Acad Sci U S A 99:11020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin JW, Santoro SW, Martin AB, King DS, Wang L, Schultz PG (2002b) Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J Am Chem Soc 124:9026−9027

    Google Scholar 

  • Cisar JS, Cravatt BF (2012) Fully functionalized small-molecule probes for integrated phenotypic screening and target identification. J Am Chem Soc 134:10385–10388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devaraj NK, Hilderbrand S, Upadhyay R, Mazitschek R, Weissleder R (2010) Bioorthogonal turn-on probes for imaging small molecules inside living cells. Angew Chem Int Ed 49:2869–2872

    Article  CAS  Google Scholar 

  • Dreyfuss G, Schwartz K, Blout ER, Barrio JR, Liu FT, Leonard NJ (1978) Fluorescent photoaffinity labeling: Adenosine 3′,5′-cyclic monophosphate receptor sites. Proc Natl Acad Sci U S A 75:1199–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubinsky L, Jarosz LM, Amara N, Krief P, Kravchenko VV, Krom BP, Meijler MM (2009) Synthesis and validation of a probe to identify quorum sensing receptors. Chem Commun (47):7378–7380

    Google Scholar 

  • Evans MJ, Cravatt BF (2006) Mechanism-based profiling of enzyme families. Chem Rev 106:3279–3301

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Hatanaka Y (2004) Simple synthesis of deuterium and 13C labeled trifluoromethyl phenyldiazirine derivatives as stable isotope tags for mass spectrometry. Chem Pharm Bull 52:1385–1386

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Hatanaka Y (2005) Post-biotinylation of photocrosslinking by Staudinger–Bertozzi ligation of preinstalled alkylazide tag. Chem Pharm Bull 53:1510–1512

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka Y (2015) Development and leading-edge application of innovative photoaffinity labeling. Chem Pharm Bull 63:1–12

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka Y, Hashimoto M, Kanaoka Y (1994) A novel biotinylated heterobifunctional cross-linking reagent bearing an aromatic diazirine. Bioorg Med Chem 2:1367–1373

    Article  CAS  PubMed  Google Scholar 

  • Hino N, Okazaki Y, Kobayashi T, Hayashi A, Sakamoto K, Yokoyama S (2005) Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid. Nat Methods 2:201−206

    Article  Google Scholar 

  • Hiramatsu T, Guo Y, Hosoya T (2007) 3-Azidodifluoromethyl-3H-diazirin-3-yl group as an all-in-one functional group for radioisotope-free photoaffinity labeling. Org Biomol Chem 5:2916–2919

    Article  CAS  PubMed  Google Scholar 

  • Hosoya T, Hiramatsu T, Ikemoto T, Nakanishi M, Aoyama H, Hosoya A, Iwata T, Maruyama K, Endo M, Suzuki M (2004) Novel bifunctional probe for radioisotope-free photoaffinity labeling: compact structure comprised of photospecific ligand ligation and detectable tag anchoring units. Org Biomol Chem 2:637–641

    Article  CAS  PubMed  Google Scholar 

  • Hosoya T, Hiramatsu T, Ikemoto T, Aoyama H, Ohmae T, Endo M, Suzuki M (2005) Design of dantrolene-derived probes for radioisotope-free photoaffinity labeling of proteins involved in the physiological Ca2+ release from sarcoplasmic reticulum of skeletal muscle. Bioorg Med Chem Lett 15:1289–1294

    Article  CAS  PubMed  Google Scholar 

  • Hsu TL, Hanson SR, Kishikawa K, Wang SK, Sawa M, Wong CH (2007) Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells. Proc Natl Acad Sci U S A 104:2614−2619

    PubMed Central  Google Scholar 

  • Hulce JJ, Cognetta AB, Niphakis MJ, Tully SE, Cravatt BF (2013) Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat Methods 10:259−264

    Article  PubMed Central  Google Scholar 

  • Kambe T, Correia BE, Niphakis MJ, Cravatt BF (2014) Mapping the protein interaction landscape for fully functionalized small-molecule probes in human cells. J Am Chem Soc 136:10777–10782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanaoka Y (1977) Organic fluorescence reagents in the study of enzymes and proteins. Angew Chem Int Ed 16:137−147

    Article  Google Scholar 

  • Kanaoka Y, Kobayashi A, Sato E, Nakayama H, Ueno T, Muno D, Sekine T (1984) Multifunctional cross-linking reagents. I. Synthesis and properties of novel photoactivable, thiol-directed fluorescent reagents. Chem Pharm Bull 32:3926−3933

    Google Scholar 

  • Kaneda M, Masuda S, Tomohiro T, Hatanaka Y (2007) A simple and efficient photoaffinity method for proteomics of GTP-binding proteins. ChembioChem 8:595–598

    Article  CAS  PubMed  Google Scholar 

  • Kanoh N, Kumashiro S, Simizu S, Kondoh Y, Hatakeyama S, Tashiro H, Osada H (2003) Immobilization of natural products on glass slides by using a photoaffinity reaction and the detection of protein-small-molecule interactions. Angew Chem Int Ed 42:5584–5587

    Article  CAS  Google Scholar 

  • Kanoh N, Honda K, Simizu S, Muroi M, Osada H (2005) Photo-cross-linked small-molecule affinity matrix for facilitating forward and reverse chemical genetics. Angew Chem Int Ed 44:3559–3562

    Article  CAS  Google Scholar 

  • Kawaguchi Y, Tanaka G, Nakase I, Imanishi M, Chiba J, Hatanaka Y, Futaki S (2013) Identification of cellular proteins interacting with octaarginine (R8) cell-penetrating peptide by photo-crosslinking. Bioorg Med Chem Lett 23:3738–3740

    Article  CAS  PubMed  Google Scholar 

  • Keeler EK, Campbell P (1976) A fluorescent photo-affinity label for cyclic AMP binding proteins. Biochem Biophys Res Commun 72:575−580

    Google Scholar 

  • Kellner S, Seidu-Larry S, Burhenne J, Motorin Y, Helm M (2011) A multifunctional bioconjugate module for versatile photoaffinity labeling and click chemistry of RNA. Nucleic Acids Res 39:7348−7360

    Article  PubMed Central  Google Scholar 

  • Kumar NS, Young RN (2009) Design and synthesis of an all-in-one 3-(1,1-difluoroprop-2-ynyl)-3H-diazirin-3-yl functional group for photo-affinity labeling. Bioorg Med Chem 17:5388–5395

    Article  CAS  PubMed  Google Scholar 

  • Kuroda T, Suenaga K, Sakakura A, Handa T, Okamoto K, Kigoshi H (2006) Study of the interaction between actin and antitumor substance aplyronine A with a novel fluorescent photoaffinity probe. Bioconjug Chem 17:524−529

    Article  Google Scholar 

  • Lamos SM, Krusemark CJ, McGee CJ, Scalf M, Smith LM, Belshaw PJ (2006) Mixed isotope photoaffinity reagents for identification of small-molecule targets by mass spectrometry. Angew Chem Int Ed 45:4329–4333

    Article  CAS  Google Scholar 

  • Le Droumaguet C, Wang C, Wang Q (2010) Fluorogenic click reaction. Chem Soc Rev 39:1233−1239

    Article  Google Scholar 

  • Lee HL, Lord SJ, Iwanaga S, Zhan K, Xie H, Williams JC, Wang H, Bowman GR, Goley ED, Shapiro L, Twieg RJ, Rao J, Moerner WE (2010) Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores. J Am Chem Soc 132:15099–15101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Ban HS, Naik R, Hong YS, Son S, Kim BK, Xia Y, Song KB, Lee HS, Won M (2013) Identification of malate dehydrogenase 2 as a target protein of the HIF-1 inhibitor LW6 using chemical probes. Angew Chem Int Ed 52:10286–10289

    Article  CAS  Google Scholar 

  • Li G, Liu Y, Liu Y, Chen L, Wu S, Liu Y, Li X (2013a) Photoaffinity labeling of small-molecule-binding proteins by DNA-templated chemistry. Angew Chem Int Ed 52:9544–9549

    Article  CAS  Google Scholar 

  • Li Z, Hao P, Li L, Tan CY, Cheng X, Chen GY, Sze SK, Shen HM, Yao SQ (2013b) Design and synthesis of minimalist terminal alkyne-containing diazirine photo-crosslinkers and their incorporation into kinase inhibitors for cell- and tissue-based proteome profiling. Angew Chem Int Ed Engl 52:8551–8556

    Article  CAS  PubMed  Google Scholar 

  • Li X, Gao X, Shi W, Ma H (2014a) Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev 114:590−659

    PubMed  Google Scholar 

  • Li Z, Wang D, Li L, Pan S, Na Z, Tan CY, Yao SQ (2014b) “Minimalist” cyclopropene-containing photo-cross-linkers suitable for live-cell imaging and affinity-based protein labeling. J Am Chem Soc 136:9990−9998

    Google Scholar 

  • Lietzan AD, St Maurice M (2013) A substrate-induced biotin binding pocket in the carboxyltransferase domain of pyruvate carboxylase. J Biol Chem 288:19915–19925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord SJ, Lee HL, Samuel R, Weber R, Liu N, Conley NR, Thompson MA, Twieg RJ, Moerner WE (2010) Azido push-pull fluorogens photoactivate to produce bright fluorescent labels. J Phys Chem B 114:14157–14167

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Vassilev PM, Li X, Kawanabe Y, Zhou J (2003) Native polycystin 2 functions as a plasma membrane Ca2+-permeable cation channel in renal epithelia. Mol Cell Biol 23:2600–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacKinnon AL, Garrison JL, Hegde RS, Taunton J (2007) Photo-leucine incorporation reveals the target of a cyclodepsipeptide inhibitor of cotranslational translocation. J Am Chem Soc 129:14560–14561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maezawa N, Tsuchikawa H, Katsumura S, Kubo T, Imaoka S (2007) Synthesis of fluorescent and photoaffinity-labeled derivatives of bisphenol A and their inhibitory activity toward hypoxic expression of erythropoietin. Bioorg Med Chem Lett 17:5121–5124

    Article  CAS  PubMed  Google Scholar 

  • Masuda S, Tomohiro T, Yamaguchi S, Morimoto S, Hatanaka Y (2015) Structure-assisted ligand-binding analysis using fluorogenic photoaffinity labeling. Bioorg Med Chem Lett 25:1675–1678

    Article  CAS  PubMed  Google Scholar 

  • Maurel D, Banala S, Laroche T, Johnsson K (2010) Photoactivatable and photoconvertible fluorescent probes for protein labeling. ACS Chem Biol 5:507–516

    Article  CAS  PubMed  Google Scholar 

  • Mayer T, Maier ME (2007) Design and synthesis of a tag-free chemical probe for photoaffinity labeling. Eur J Org Chem 2007:4711–4720

    Article  Google Scholar 

  • Morimoto S, Tomohiro T, Maruyama N, Hatanaka Y (2013) Photoaffinity casting of a coumarin flag for rapid identification of ligand-binding sites within protein. Chem Commun 49:1811–1183

    Article  CAS  Google Scholar 

  • Murai Y, Takahashi M, Muto Y, Hatanaka Y, Hashimoto M (2010) Simple deuterium introduction at α-position of carbonyl in diazirinyl derivatives for photoaffinity labeling. Heterocycles 82:909–915

    Article  CAS  Google Scholar 

  • Murai Y, Masuda K, Sakihama Y, Hashidoko Y, Hatanaka Y, Hashimoto M (2012) Comprehensive synthesis of photoreactive (3-trifluoromethyl)diazirinyl indole derivatives from 5- and 6- trifluoroacetylindoles for photoaffinity labeling. J Org Chem 77:8581–8587

    Article  CAS  PubMed  Google Scholar 

  • Nagase T, Nakata E, Shinkai S, Hamachi I (2003) Construction of artificial signal transducers on a lectin surface by post-photoaffinity-labeling modification for fluorescent saccharide biosensors. Chem Eur J 9:3660–3669

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Inomata S, Ebine M, Manabe Y, Iwakura I, Ueda M (2011) “Click-made” biaryl-linker improving efficiency in protein labelling for the membrane target protein of a bioactive compound. Org Biomol Chem 9:83–85

    Article  CAS  PubMed  Google Scholar 

  • Nakashima H, Hashimoto M, Sadakane Y, Tomohiro T, Hatanaka Y (2006) Simple and versatile method for tagging phenyldiazirine photophores. J Am Chem Soc 128:15092–15093

    Article  CAS  PubMed  Google Scholar 

  • Nakayama H, Hatanaka Y, Yoshida E, Oka K, Takanohashi M, Amano Y, Kanaoka Y (1992) Photolabeled sites with a tetrodotoxin derivative in the domain III and IV of the electroplax sodium channel. Biochem Biophys Res Commun 184:900–907

    Article  CAS  PubMed  Google Scholar 

  • Ong SE, Foster LJ, Mann M (2003) Mass spectrometric-based approaches in quantitative proteomics. Methods 29:124−130

    Article  Google Scholar 

  • Park D, O'Doherty I, Somvanshi RK, Bethke A, Schroeder FC, Kumar U, Riddle DL (2012) Interaction of structure-specific and promiscuous G-protein-coupled receptors mediates small-molecule signaling in Caenorhabditis elegans. Proc Natl Acad Sci U S A 109:9917–9922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Koh M, Koo JY, Lee S, Park SB (2016) Investigation of specific binding proteins to photoaffinity linkers for efficient deconvolution of target protein. ACS Chem Biol 11:44−52

    PubMed  Google Scholar 

  • Patterson DM, Nazarova LA, Prescher JA (2014) Finding the right (bioorthogonal) chemistry. ACS Chem Biol 9:592–605

    Article  CAS  PubMed  Google Scholar 

  • Pugliese L, Coda A, Malcovati M, Bolognesi M (1993) Three-dimensional structure of the tetragonal crystal form of egg-white avidin in its functional complex with biotin at 2.7 A resolution. J Mol Biol 231:698–710

    Article  CAS  PubMed  Google Scholar 

  • Sawa M, Hsu TL, Itoh T, Sugiyama M, Hanson SR, Vogt PK, Wong CH (2006) Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc Natl Acad Sci U S A 103:12371–12376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Zhang CJ, Chen GY, Yao SQ (2012) Cell-based proteome profiling of potential dasatinib targets by use of affinity-based probes. J Am Chem Soc 134:3001–3014

    Article  CAS  PubMed  Google Scholar 

  • Shieh P, Hangauer MJ, Bertozzi CR (2012) Fluorogenic azidofluoresceins for biological imaging. J Am Chem Soc 134:17428–17431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivakumar K, Xie F, Cash BM, Long S, Barnhill HN, Wang Q (2004) A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org Lett 6:4603−4606

    Article  Google Scholar 

  • Sohn CH, Agnew HD, Lee JE, Sweredoski MJ, Graham RL, Smith GT, Hess S, Czerwieniec G, Loo JA, Heath JR, Deshaies RJ, Beauchamp JL (2012) Designer reagents for mass spectrometry-based proteomics: clickable cross-linkers for elucidation of protein structures and interactions. Anal Chem 84:2662–2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Z, Zhang Q (2009) Fluorous aryldiazirine photoaffinity labeling reagents. Org Lett 11:4882

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Huang W, Zhang Q (2012) Isotope-coded, fluorous photoaffinity labeling reagents. Chem Commun 48:3339–3341

    Article  CAS  Google Scholar 

  • Srinivas N, Jetter P, Ueberbacher BJ, Werneburg M, Zerbe K, Steinmann J, Van der Meijden B, Bernardini F, Lederer A, Dias RL, Misson PE, Henze H, Zumbrunn J, Gombert FO, Obrecht D, Hunziker P, Schauer S, Ziegler U, Käch A, Eberl L, Riedel K, DeMarco SJ, Robinson JA (2010) Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 327:1010–1013

    Article  CAS  PubMed  Google Scholar 

  • Suchanek M, Radzikowska A, Thiele C (2005) Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells. Nat Methods 2:261–267

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Okamura T, Tomohiro T, Iwabuchi Y, Kanoh N (2015) Third generation photo-cross-linked small-molecule affinity matrix: a photoactivatable and photocleavable system enabling quantitative analysis of the photo-cross-linked small molecules and their target purification. Bioconjug Chem 26:389–395

    Article  CAS  PubMed  Google Scholar 

  • Taldone T, Rodina A, Dagama Gomes EM, Riolo M, Patel HJ, Alonso-Sabadell R, Zatorska D, Patel MR, Kishinevsky S, Chiosis G (2013) Synthesis and evaluation of cell-permeable biotinylated PU-H71 derivatives as tumor Hsp90 probes. Beilstein J Org Chem 9:544–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura T, Tsukiji S, Hamachi I (2012) Native FKBP12 engineering by ligand-directed tosyl chemistry: labeling properties and application to photo-cross-linking of protein complexes in vitro and in living cells. J Am Chem Soc 134:2216−2226

    Article  Google Scholar 

  • Tanaka Y, Bond MR, Kohler JJ (2008) Photocrosslinkers illuminate interactions in living cells. Mol BioSyst 4:473–480

    Article  CAS  PubMed  Google Scholar 

  • Tomohiro T, Hatanaka Y (2014) Diazirine-based multifunctional photo-probes for affinity-based elucidation of protein-ligand interaction. Heterocycles 89:2697–2727

    Article  CAS  Google Scholar 

  • Tomohiro T, Hashimoto M, Hatanaka Y (2005) Cross-linking chemistry and biology: development of multifunctional photoaffinity probes. Chem Rec 5:385–395

    Article  CAS  PubMed  Google Scholar 

  • Tomohiro T, Tachi N, Azuma Y, Hatanaka Y (2009) Hydrophilic diazirine polymer for one-step photo-fabrication of proteins on polypropylene surface. Heterocycles 79:897–908

    Article  CAS  Google Scholar 

  • Tomohiro T, Kato K, Masuda S, Kishi H, Hatanaka Y (2011) Photochemical construction of coumarin fluorophore on affinity-anchored protein. Bioconjug Chem 22:315–318

    Article  CAS  PubMed  Google Scholar 

  • Tomohiro T, Yamamoto A, Tatsumi Y, Hatanaka Y (2013a) [3-(Trifluoromethyl)-3H-diazirin-3-yl]coumarin as a carbene-generating photocross-linker with masked fluorogenic beacon. Chem Commun 49:11551–11553

    Article  CAS  Google Scholar 

  • Tomohiro T, Inoguchi H, Masuda S, Hatanaka Y (2013b) Affinity-based fluorogenic labeling of ATP-binding proteins with sequential photoactivatable cross-linkers. Bioorg Med Chem Lett 23:5605–5608

    Article  CAS  PubMed  Google Scholar 

  • Tomohiro T, Morimoto S, Shima T, Chiba J, Hatanaka Y (2014) An isotope-coded fluorogenic cross-linker for high-performance target identification based on photoaffinity labeling. Angew Chem Int Ed 53:13502–13505

    Article  CAS  Google Scholar 

  • Tsukiji S, Miyagawa M, Takaoka Y, Tamura T, Hamachi I (2009) Ligand-directed tosyl chemistry for protein labeling in vivo. Nat Chem Biol 5:341−343

    Article  Google Scholar 

  • Wartmann T, Lindel T (2013) L-Phototryptophan. Eur J Org Chem 2013(9):1649–1652

    Google Scholar 

  • Xiang S, Tong L (2008) Crystal structures of human and Staphylococcus aureus pyruvate carboxylase and molecular insights into the carboxyltransfer reaction. Nat Struct Mol Biol 15:295–302

    Article  CAS  PubMed  Google Scholar 

  • Yang P, Liu K (2015) Activity-based protein profiling: recent advances in probe development and applications. ChembioChem 16:712–724

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Fahrni CJ (2004) A fluorogenic probe for the copper(I)-catalyzed azide-alkyne ligation reaction: modulation of the fluorescence emission via 3(n, π)-1(π,π) inversion. J Am Chem Soc 126:8862−8863

    Google Scholar 

  • Ziegler S, Pries V, Hedberg C, Waldmann H (2013) Target identification for small bioactive molecules: finding the needle in the haystack. Angew Chem Int Ed 52:2744−2792

    Article  Google Scholar 

Download references

Acknowledgments

The author is delighted to recognize the many contributions of my collaborators, whose names appear in the references, and especially grateful to Professor Yasumaru Hatanaka for his pioneering works on multifunctional diazirines. His far-sighted ideas and superior insights have been impressed many researchers in this field. The author is grateful to JSPS KAKENHI (the Grants-in-Aids for Scientific Research from the Japan Society for the Promotion of Sciences) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takenori Tomohiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Tomohiro, T. (2017). Tag-Creation Approaches for Highly Efficient Profiling of Interacting Proteins and Domains. In: Hatanaka, Y., Hashimoto, M. (eds) Photoaffinity Labeling for Structural Probing Within Protein. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56569-7_2

Download citation

Publish with us

Policies and ethics