Skip to main content

Abstract

This chapter describes the conceptual basis of a novel form of cancer therapy that we have developed, which uses structural components of the stroma of a tumor as an anchor and launchpad for disseminating chemotherapeutic agents within a tumor. It also utilizes a phenomenon called the Enhanced Permeability and Retention (EPR) effect, described in this chapter and elsewhere in this book, to localize and concentrate the effect of the therapy on the lesion and minimize damage to healthy organs. We refer to this combined strategy as cancer (CA) stroma (S) targeting (T), CAST therapy. The concept of CAST therapy is that stroma-targeting immunconjugates extravasate selectively from tumor vessels (but not from normal counterparts), due to the EPR effect, bind to the stroma to create a scaffold, from which sustained release of cytotoxic agents occurs and subsequently diffuse throughout the tumor tissue to damage both tumor cells and tumor vessels. Various anticancer agents, gene-delivery systems, and monoclonal antibody (mAb)-based therapies have been produced, based on the enhanced permeability and retention (EPR) effect, but the current combination of EPR with cancer stroma targeting for delivery of a drug is original and new. As one example to illustrate how we utilize the CAST concept, we present a version using an antibody to insoluble fibrin. We have reported that hemorrhage caused by cancer erosion can induce fibrin clot formation that creates a mass of insoluble fibrin (IF) in the tumor stroma. Along with that, Influx of fibroblasts and inflammatory cells into the tumor tissue also occurs. Consequently, most cancers possess a fibrin-rich stroma that hinders the distribution of macromolecules, including antibody-drug conjugates (ADCs). Therefore, the EPR effect is not clinically and efficiently functioning in such situations. We have developed an anti-IF mAb that does not react with fibrinogen or soluble fibrin and have successfully created and optimized anti-IF ADCs. An ADC is an anti-IF antibody conjugated with monomethyl auristatin E (MMAE), a potent microtubule inhibitor, via a Val-Leu-Lys linker that is severed specifically by plasmin (PLM). Free MMAE is only released when the IF- ADC is bound to the epitopes in the IF because plasmin is only active on IF and is neutralized by the innate α2-plasmin inhibitor circulating in the blood. Free MMAE may therefore easily reach cancer cells by diffusing through the stromal barrier. MMAE released from IF-ADC may also attack the tumor vascular endothelial cells resulting in tumor necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  2. Duncan R (2003) The dawning era of polymer therapeutics. Natl Rev 2:347–360

    CAS  Google Scholar 

  3. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    Article  CAS  Google Scholar 

  4. Matsumura Y, Kataoka K (2009) Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 100:572–579

    Article  CAS  Google Scholar 

  5. Hosokawa S, Tagawa T, Niki H, Hirakawa Y, Nohga K, Nagaike K (2003) Efficacy of immunoliposomes on cancer models in a cell-surface-antigen-density-dependent manner. Brit J Cancer 89:1545–1551

    Article  CAS  Google Scholar 

  6. Hamaguchi T, Matsumura Y, Nakanishi Y, Muro K, Yamada Y, Shimada Y, Shirao K, Niki H, Hosokawa S, Tagawa T, Kakizoe T (2004) Antitumor effect of MCC-465, pegylated liposomal doxorubicin tagged with newly developed monoclonal antibody GAH, in colorectal cancer xenografts. Cancer Sci 95:608–613

    Article  CAS  Google Scholar 

  7. Matsumura Y, Gotoh M, Muro K, Yamada Y, Shirao K, Shimada Y, Okuwa M, Matsumoto S, Miyata Y, Ohkura H, Chin K, Baba S, Yamao T, Kannami A, Takamatsu Y, Ito K, Takahashi K (2004) Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann Oncol 15:517–525

    Article  CAS  Google Scholar 

  8. Matsumura Y (2012) Cancer stromal targeting (CAST) therapy. Adv Drug Deliv Rev 64:710–719

    Article  CAS  Google Scholar 

  9. Matsumura Y, Kimura M, Kato H, Yamamoto T, Maeda H (1989) In: Kinins V, Abe K, Moriya H, Fujii S (eds) Quantification, isolation and structural determination of bradykinin and hydroxyprolyl-bradykinin in tumor ascites. Plenum Publishing, New York, pp 587–592

    Google Scholar 

  10. Maeda H, Matsumura Y, Kato H (1988) Purification and identification of (Hydroxyprolyl3) bradykinin in ascitic fluid from a patient with gastric cancer. J Biol Chem 263:16051–16054

    CAS  PubMed  Google Scholar 

  11. Matsumura Y, Kimura M, Yamamoto T, Maeda H (1988) Involvement of the kinin-generating cascade and enhanced vascular permeability in tumor tissue. Jpn J Cancer Res 79:1327–1334

    Article  CAS  Google Scholar 

  12. Senger DR, Galli SJ, Dvorak AM, Peruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secret a vascular permeability factor that promotes accumulation of ascites fluid. Science 21:983–985

    Article  Google Scholar 

  13. Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400

    Article  CAS  Google Scholar 

  14. Dvorak HF, Rickles FR (2006) Malignancy and hemostasis. In: Colman RW, Marder VJ, Clowes AW, George JN, Goldharber SZ (eds) Hemostasis and thrombosis: basic principles and clinical practice, 5th edn. LippinCott Williams $ Wilkins, Philadelphia, pp 851–873

    Google Scholar 

  15. Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC (2016) Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res 18:84

    Article  Google Scholar 

  16. Nielsen MF, Mortensen MB, Detlefsen S (2016) Key players in pancreatic cancer-stroma interaction: cancer-associated fibroblasts, endothelial and inflammatory cells. World J Gastroenterol 22:2678–2700

    Article  CAS  Google Scholar 

  17. Brown LF, Dvorak AM, Dvorak HF (1989) Leaky vessels, fibrin deposition, and fibrosis: a sequence of events common to solid tumors and to many other types of disease. Am Rev Respir Dis 140:1104–1107

    Article  CAS  Google Scholar 

  18. Busuttil SJ, Ploplis VA, Castellino FJ, Tang L, Eaton JW, Plow EF (2004) A central role for plasminogen in the inflammatory response to biomaterials. J Thromb Haemost 2:1798–1805

    Article  CAS  Google Scholar 

  19. Sawai T, Tomono K, Yanagihara K, Yamamoto Y, Kaku M, Hirakata Y, Koga H, Tashiro T, Kohno S (1997) Role of coagulase in a murine model of hematogenous pulmonary infection induced by intravenous injection of Staphylococcus aureus enmeshed in agar beads. Infect Immun 65(2):466–471

    Article  CAS  Google Scholar 

  20. Trousseau A (1865) Pegmasia alba dolens, vol 3. Balliere JB et Fils, Paris

    Google Scholar 

  21. Stein PD, Beemath A, Meyers FA, Skaf E, Sanchez J, Olson RE (2006) Incidence of venous thromboembolism in patients hospitalized with cancer. Am J Med 119:60–68

    Article  Google Scholar 

  22. Kano MR, Bae Y, Iwata C, Morishita Y, Yashiro M, Oka M, Fujii T, Komuro A, Kiyono K, Kaminishi M, Hirakawa K, Ouchi Y, Nishiyama N, Kataoka K, Miyazono K (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proc Natl Acad Sci 104:3460–3465

    Article  CAS  Google Scholar 

  23. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, Feig C, Combs C, Winter SP, Ireland-Zecchini H, Reichelt S, Howat WJ, Chang A, Dhara M, Wang L, Rückert F, Grützmann R, Pilarsky C, Izeradjene K, Hingorani SR, Huang P, Davies SE, Plunkett W, Egorin M, Hruban RH, Whitebread N, McGovern K, Adams J, Iacobuzio-Donahue C, Griffiths J, Tuveson DA (2009) Inhibition of hedgehog signalling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324:1457–1461

    Article  CAS  Google Scholar 

  24. Thompson CB, Shepard HM, O’Connor PM, Kadhim S, Jiang P, Osgood RJ, Bookbinder LH, Li X, Sugarman BJ, Connor RJ, Nadjsombati S, Frost GI (2010) Enzymatic depletion of tumor hyaluronan induces antitumor responses in preclinical animal models. Mol Cancer Ther 9:3052–3064

    Article  CAS  Google Scholar 

  25. Unezaki S, Maruyama K, Hosoda J, Magae I, Koyanagi Y, Nakata M, Ishida O, Iwatsuru M, Tsuchiya S (1996) Direct measurement of the extravasation of polyethyleneglycol-coated liposomes into solid tumor tissue by in vivo fluorescence microscopy. Int J Pharm 144:11–17

    Article  CAS  Google Scholar 

  26. Tsukioka Y, Matsumura Y, Hamaguchi T, Koike H, Moriyasu F, Kakizoe T (2002) Pharmaceutical and biomedical differences between micellar doxorubicin (NK911) and liposomal doxorubicin (Doxil). Jpn J Cancer Res 93:1145–1153

    Article  CAS  Google Scholar 

  27. Yasunaga M, Manabe S, Tarin D, Matsumura Y (2011) Cancer-stroma targeting therapy by cytotoxic immunoconjugate bound to the collagen 4 network in the tumor tissue. Bioconjug Chem 22:1776–1783

    Article  CAS  Google Scholar 

  28. Yasunaga M, Manabe S, Matsumura Y (2011) New concept of cytotoxic immunoconjugate therapy targeting cancer-induced fibrin clots. Cancer Sci 102:1396–1402

    Article  CAS  Google Scholar 

  29. Bala V, Rao S, Boyd BJ, Prestidge CA (2013) Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. J Control Release 172:48–61

    Article  CAS  Google Scholar 

  30. Gebleux R, Stringhini M, Casanova R, Soltermann A, Neri D (2018) Non-internalizing antibody-drug conjugates display potent anti-cancer activity upon proteolytic release of monomethyl auristatin E in the subendothelial extracellular matrix. Int J Cancer 140:1670–1679

    Article  Google Scholar 

  31. Hisada Y, Yasunaga M, Hanaoka S, Saijou S, Sugino T, Tsuji A, Saga T, Tsumoto K, Manabe S, Kuroda J, Kuratsu J, Matsumura Y (2013) Discovery of an uncovered region in fibrin clots and its clinical significance. Matsumura Y Sci Rep 3:2604–2610

    Article  Google Scholar 

  32. Fuchigami H, Manabe S, Yasunaga M, Matsumura Y (2018) Chemotherpy payload of anti-insoluble fibrin antibody-drug conjugate is released specifically upon binding to fibrin. Sci Rep 8:14211

    Article  Google Scholar 

  33. Lerch K, Leng C, Pinto A, Linkesch W, Sill H, Linden O, Andreas Viardot A, Keller U, Hess G, Lastoria S, Frigeri F, Neik N, Pott C, Scholz CW, Pezzutto A (2016) 90Yttrium-Ibritumomab Tiuxetan as first line treatment for follicular non-Hodgkin lymphoma. 5 year results from an international multicenter phase II clinical trial. Blood 128:1806

    Article  Google Scholar 

  34. Kaminski MS, Tuck M, Estes J, Kolstad A, Ross CW, Zasadny K, Regan D, Kison P, Fisher S, Kroll S, Wahl RL (2005) 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 352(5):441–449

    Article  CAS  Google Scholar 

  35. Larson JA, Carrasquillo JA, Cheung NV, Press O (2015) Radioimmunotherapy of human tumours. Nat Rev Cancer 15:347–360

    Article  CAS  Google Scholar 

  36. Pardoll DM (2012) Immunology beats cancer: a blueprint for successful translation. Nat Immunol 13(12):1129–1132

    Article  CAS  Google Scholar 

  37. Cook AM, Lesterhuis WJ, Nowak AK, Lake RA (2016) Chemotherapy and immunotherapy: mapping the road ahead. Curr Opin Immunol 39:23–29

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Matsumura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsumura, Y. (2019). Principle of CAST Strategy. In: Matsumura, Y., Tarin, D. (eds) Cancer Drug Delivery Systems Based on the Tumor Microenvironment. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56880-3_11

Download citation

Publish with us

Policies and ethics