Skip to main content

Size and Structure Effects

  • Chapter
From Molecules to Molecular Systems
  • 131 Accesses

Abstract

The functionality of molecules cannot be discussed without considering the role of environmental molecules. Since 1980 the role of environmental molecules has been studied in terms of molecular clusters. This chapter considers some typical examples that demonstrate the size-dependence of proton transfer reactions, the size-dependence of the location of two positive charges in molecular clusters, and structure generation of environmental molecules around solute species. The last topic is particularly important for analyzing molecular functionality in an aqueous environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rose J (1961) Dynamic physical chemistry. Pitman, London

    Google Scholar 

  2. Caldin EF, Gold V (eds) (1975) Proton transfer reactions. Chapman and Hall, London

    Google Scholar 

  3. Weller A (1958) Protolytische reaktionen angeregter oxyverbindungen. Z Phys Chem Neue Folge 17:224–245

    Article  CAS  Google Scholar 

  4. Nagakura S (1954) Study on hydrogen bonding by near UV absorption spectroscopy. J Chem Soc Jpn 75:734–737

    Google Scholar 

  5. Harris CM, Seiinger BK (1980) Acid-base properties of 1-naphthol. Proton-induced fluorescence quenching. J Phys Chem 84:1366–1371

    Article  CAS  Google Scholar 

  6. Hara K, Baba H (1975) Photodissociation of α-naphthol in solution: Influence of hydrogen bonding. 71:1100–1108

    CAS  Google Scholar 

  7. Cheshnovsky O, Leutwyler S (1985) Excited-state proton transfer in neutral microclusters: α-naphthol (NH3). Chem Phys Lett 121:1–8

    Article  CAS  Google Scholar 

  8. Cheshnovsky O, Leutwyler S (1988) Proton transfer in neutral gas-phase clusters: α-naphthol. J Chem Phys 88:4127

    Article  CAS  Google Scholar 

  9. Lias SG, Ausloos P (1975) Ion-molecule reactions. American Chemical Society, Washington, DC

    Google Scholar 

  10. Jouvet C, Lardeux-Dedonder C, Richard-Viard M, Solgadi D, Tramer A (1990) Reactivity of molecular clusters in the gas phase. Proton transfer reaction in neutral phenol-(C2H5NH2)n. J Phys Chem 94:5041–5048

    Article  CAS  Google Scholar 

  11. Kim SK, Li S, Bernstein ER (1991) Excited-state intermolecular proton transfer in isolated clusters: 1-naphthol/ammonia and water. J Chem Phys 95:3119–3128

    Article  CAS  Google Scholar 

  12. Breen JJ, Peng LW, Willberg DM, Heikal A, Cong P, Zewail AH (1990) Real-time probing of reactions in clusters. J Chem Phys 92:805–807

    Article  CAS  Google Scholar 

  13. Hineman MF, Brucker GA, Kelley DF, Bernstein ER (1992) Excited-state proton transfer in 1-naphthol/ammonia clusters. J Chem Phys 97:3341–3347

    Article  CAS  Google Scholar 

  14. Knochenmuss R, Leutwyler S (1989) Proton transfer from 1-naphthol to water: Small cluster to the bulk. J Chem Phys 91:1268–1278

    Article  CAS  Google Scholar 

  15. Steadman J, Syage JA (1990) Picosecond mass-selective measurements of phenol-(NH3)n acid-base chemistry in clusters. J Chem Phys 92:4630–4633

    Article  CAS  Google Scholar 

  16. Steadman J, Syage JA (1991) Time-resolved study of phenol proton transfer in clusters. 3. Solvent structure and ion-pair formation. J Phys Chem 95:10326–10331

    Article  CAS  Google Scholar 

  17. Syage JA, Steadman J (1992) Probing double-minima ion-molecule reaction coordinates by photoelectron spectroscopy of clusters: PhOH+ + NH3 → PhO + NH +4 . J Phys Chem 96:9606–9608

    Article  CAS  Google Scholar 

  18. Syage JA (1993) Tunneling mechanism for excited-state proton transfer in phenol–ammonia clusters. J Phys Chem 97:12523–12529

    Article  CAS  Google Scholar 

  19. Hineman MF, Kelley DF, Bernstein ER (1993) Proton transfer dynamics and cluster ion fragmentation in phenol/ammonia clusters. J Chem Phys 99:4533–4538

    Article  CAS  Google Scholar 

  20. Volpel R, Hofmann G, Steidl M, Stenke M, Schlapp M, Trassl R, Salzborn E (1993) Ionization and fragmentation of fullerene ions by electron impact. Phys Rev Lett 71:3439–3441

    Article  Google Scholar 

  21. Sattler K, Muhlbach J, Echt O, Pfau P, Recknagel E (1981) Evidence for Coulomb explosion of doubly charged microclusters. Phys Rev Lett 47:160–163

    Article  CAS  Google Scholar 

  22. Ohashi K, Nishi N (1992) Photodissociation spectroscopy on charge resonance band of (C6H6) +2 and (C6H6) +3 . J Phys Chem 96:2931–2932

    Article  CAS  Google Scholar 

  23. Ohashi K, Nakai Y, Shibata T, Nishi N (1992) Photodissociation spectroscopy of (C6H6) +2 . Laser Chem 14:3–14

    Article  Google Scholar 

  24. Schriver KE, Hahn MY, Whetten RL (1987) Exciton fusion in molecular clusters. Phys Rev Lett 59:1906–1909

    Article  CAS  Google Scholar 

  25. Schriver KE, Paguia AJ, Hahn MY, Honea EC, Whetten RL (1987) Are clusters of nonpolar molecules icosahedral? J Phys Chem 91:3131

    Article  CAS  Google Scholar 

  26. Stace AJ (1988) Evidence of two stable forms of doubly and triply charged water clusters. Phys Rev Lett 61:306–309

    Article  CAS  Google Scholar 

  27. Stace AJ (1990) Possible ion pairs in multiply charged water clusters Chem Phys Lett 174:103–107

    Article  CAS  Google Scholar 

  28. Stace AJ, Shukla AK (1982) Preferential solvation of hydrogen ions in mixed clusters of water, methanol, and ethanol. J Am Chem Soc 107:5314

    Article  Google Scholar 

  29. Nagashima U, Shinohara H, Nishi N, Tanaka H (1986) Enhanced stability of ion-clathrate structure of magic number water clusters. J Chem Phys 84:209

    Article  CAS  Google Scholar 

  30. Coolbaugh MT, Peifer WR, Garvey JF (1989) Ion-molecule chemistry within doubly charged ammonia clusters. Chem Phys Lett 156:19–23

    Article  CAS  Google Scholar 

  31. Frank HS, Wen WY (1957) Structural aspects of ion-solvent interaction in aqueous solutions: A suggested picture of water structure. Discuss Faraday Soc 24:133

    Article  Google Scholar 

  32. Franks F, Ives DJG (1966) The structural properties of alcohol-water mixtures. Q Rev Chem Soc 20:1–44

    Article  CAS  Google Scholar 

  33. Nakanishi K, Ikan K, Okazaki S, Touhara H (1984) Computer experiments on aqueous solutions. III. Monte Carlo calculation on the hydration of tertiary butyl alcohol in an infinitely dilute aqueous solution with a new water-butanol pair potential. J Chem Phys 80:1656–1670

    Article  CAS  Google Scholar 

  34. Ben-Naim A (1974) Water and aqueous solutions. Plenum Press, New York, p 365

    Book  Google Scholar 

  35. Ben-Naim A (1980) Hydrophobic interactions. Plenum Press, New York

    Book  Google Scholar 

  36. Ben-Naim A (1989) Solvent-induced interactions: Hydrophobic and hydrophilic phenomena.J Chem Phys 90:7412–7425

    Article  CAS  Google Scholar 

  37. Eisenberg D, Kauzmann W (1969) The structure and properties of water. Oxford University Press, Oxford

    Google Scholar 

  38. Tanford C (1976) The hydrophobic effect. Wiley, New York

    Google Scholar 

  39. Smith DE, Haymet ADJ (1993) Free energy, entropy, and internal energy of hydrophobic interactions: Computer simulations: J Chem Phys 98:6445–6454

    Article  CAS  Google Scholar 

  40. Ben-Naim A, Yaacobi M (1974) Effects of solutes on the strength of hydrophobic interaction and its temperature dependence. J Phys Chem 78:170–175

    Article  Google Scholar 

  41. Yaacobi M, Ben-Naim A (1974) Solvophobic interaction. J Phys Chem 78:175–178

    Article  CAS  Google Scholar 

  42. Nishi N, Takahashi S, Matsumoto M, Tanaka A, Muraya K, Takamuku T, Tamaguchi T (1995) Hydrogen-bonding cluster formation and hydrophobic solute association in aqueous solution of ethanol. J Phys Chem 99:462–468

    Article  CAS  Google Scholar 

  43. Soper AK, Finney JL (1993) Hydration of methanol in aqueous solution. Phys Rev Lett 71:4346–4349

    Article  CAS  Google Scholar 

  44. Finney JL, Soper AK (1994) Solvent structure and perturbations in solution of chemical and biological importance. Chem Soc Rev 1–10

    Google Scholar 

  45. Nishi N, Koga K, Ohshima C, Yamamoto K, Nagashima U, Nagami K (1988) Molecular association in ethanol-water mixtures studied by mass spectrometric analysis of clusters generated through adiabatic expansion of liquid jets. J Am Chem Soc 110:5246–5255

    Article  CAS  Google Scholar 

  46. Matsumoto M, Nishi N, Takamuku T, Yamaguchi T, Saita M (1995) Structure of clusters in ethanol-water binary solutions studied by mass spectrometry and X-ray diffraction. Bull Chem Soc Jpn 68(7):1775–1783x

    Article  CAS  Google Scholar 

  47. Nishi N (1990) Aqueous molecular clusters isolated as liquid fragments by adiabatic expansion of liquid jets. Z Phys D-Atoms Mol Clusters 15:239–255

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Nishi, N. (1998). Size and Structure Effects. In: Nagakura, S. (eds) From Molecules to Molecular Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66868-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66868-8_15

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66870-1

  • Online ISBN: 978-4-431-66868-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics