Skip to main content

Neuroprotective Effect of Mild Hypothermia in Experimental Brain Ischemia

  • Conference paper
Brain Hypothermia

Summary

Modern hypothermia therapy has a history of more than a half century. However, this therapy was not commonly accepted as a treatment for cerebral damage because of its harmful complications and the lack of basic knowledge of its beneficial effects. In 1987, it was shown in animal experiments that lowering brain temperature only by a few degrees Celsius during ischemia could protect central neurons against ischemic damages. Since then, widespread basic experiments have started, providing useful information for the clinical application of hypothermia. The extent of neuronal protection by postischemic hypothermia depends on the time of introduction, the duration and the depth of hypothermia, and the degree of ischemic damages. In our gerbil models, hippocampal CA1 neurons were definitely protected against damage by hypothermia, initiated several hours after 5-min forebrain ischemia and maintained for 24h. In a focal ischemia model of the rat, hypothermia at 33°C for 24 h, which was introduced several hours after ischemia, decreased the infarct volume of the ischemic hemisphere. The mechanism underlying the protective effect of postischemic hypothermia is not clear yet. A growing body of evidence has indicated that lowering temperature depresses ischemia-induced glutamate release, intracellular calcium mobilization, and microglial activation along with the production of NO and superoxides. This lowering of temperature also restores postischemic protein synthesis, permeability of vessels, and the function of the blood-brain barrier, and obviously induces transcription factors like AP1, which may be linked to the synthesis of cytokines. Thus, the mode of action of hypothermia is broad and nonspecific and may be greatly advantageous in regard to cerebral protection against ischemic damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Busto R, Dietrich WD, Globus MY-T, Valdés I, Scheinberg P, Ginsberg MD (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7:729–738

    Article  PubMed  CAS  Google Scholar 

  2. Busto R, Globus MY-T, Dietrich WD, Martinez E, Valdés I, Ginsberg MD (1989) Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke 20:904–910

    Article  PubMed  CAS  Google Scholar 

  3. Colbourne F, Corbett D (1994) Delayed and prolonged post-ischemic hypothermia is neuroprotective in the gerbil. Brain Res 654:265–272

    Article  PubMed  CAS  Google Scholar 

  4. Dempsey RJ, Combs DJ, Maley ME, Gowen DE, Roy MW, Donaldson DL (1987) Moderate hypothermia reduces postischemic edema development and leukotriene production. Neurosurgery 21:177–181

    Article  PubMed  CAS  Google Scholar 

  5. Deshpande JK, Siresjö BK, Wieloch T (1987) Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia. J Cereb Blood Flow Metab 7:89–95

    Article  PubMed  CAS  Google Scholar 

  6. Dietrich WD, Busto R, Halley M, Valdes I (1990) The importance of brain temperature in alterations of the blood-brain barrier following cerebral ischemia. J Neuropathol Exp Neurol 49:486–497

    Article  PubMed  CAS  Google Scholar 

  7. Fay T, Henny GC (1938) Symposium on cancer. Correlation of body segmental temperature and its relation to the location of carcinomatous metastasis. Clinical observations and response to methods of refrigeration. Surg Gynecol Obstet 66:512–524

    Google Scholar 

  8. Fay T (1959) Early experiences with local and generalized refrigeration of the human brain. J Neurosurg 16:239–260

    Article  PubMed  CAS  Google Scholar 

  9. Gorter JA, Petrozzino JJ, Aronica EM, Rosenbaum DM, Opitz T, Bennett MVL, Connor JA, Zukin RS (1997) Global ischemia induces downregulation of Glur2 mRNA and increases AMPA receptor-mediated Ca2+ influx in hippocampal CAl neurons of gerbil. J Neurosci 17: 6179–6188

    PubMed  CAS  Google Scholar 

  10. Hayashi N (1997) Prevention of vegetation after severe head trauma and stroke by combination therapy of cerebral hypothermia and activation of immune-dopaminergic nervous system. Soc Treat Coma Pro 6:133–145

    Google Scholar 

  11. Kataoka K, Yanase H (1998) Mild hypothermia—a revived countermeasure against ischemic neuronal damages. Neurosci Res 32:103–117

    Article  PubMed  CAS  Google Scholar 

  12. Kim Y, Busto R, Dietrich WD, Kraydieh S, Ginsberg MD (1996) Delayed postischemic hyperthermia in awake rats worsens the histopathological outcome of transient focal cerebral ischemia. Stroke 27:2274–2280

    Article  PubMed  CAS  Google Scholar 

  13. MacManus JP, Linnik MD (1997) Gene expression induced by cerebral ischemia: An apoptotic perspective. J Cereb Blood Flow Metab 17:815–832

    Article  PubMed  CAS  Google Scholar 

  14. Minamisawa H, Smith M-L, Siesjö BK (1990) The effect of mild hyperthermia and hypothermia on brain damage following 5, 10, and 15 minutes of forebrain ischemia. Ann Neurol 28:26–33

    Article  Google Scholar 

  15. Mitani A, Kubo H, Iga K, Imon H, Kadoya F, Kataoka K (1990) A new enzymatic cycling technique for glutamate determination in brain microdialysates. J Neurochem 54:709–711

    Article  PubMed  CAS  Google Scholar 

  16. Mitani A, Kataoka K (1991) Critical levels of extracellular glutamate mediating gerbil hippocampal delayed neuronal death during hypothermia: Brain microdialysis study. Neuroscience 42:661–670

    Article  PubMed  CAS  Google Scholar 

  17. Mitani A, Kadoya F, Kataoka K (1991) Temperature dependence of hypoxia-induced calcium accumulation in gerbil hippocampal slices. Brain Res 562:159–163

    Article  PubMed  CAS  Google Scholar 

  18. Mitani A, Yanase H, Sakai K, Wake Y, Kataoka K (1993) Origin of intracellular Ca2+ elevation induced by in vitro ischemia-like condition in hippocampal slices. Brain Res 601:103–110

    Article  PubMed  CAS  Google Scholar 

  19. Mitani A, Andou Y, Matsuda S, Arai T, Sakanaka M, Kataoka K (1994) Origin of ischemia- induced glutamate efflux in the CAl field of the gerbil hippocampus: An in vivo brain micro- dialysis study. J Neurochem 63:2152–2164

    Article  PubMed  CAS  Google Scholar 

  20. Mitani A, Namba S, Ikemune K, Yanase H, Arai T, Kataoka K (1998) Postischemic enhancements of N-methyl-D-aspartic acid (NMDA) and non-NMDA receptor-mediated responses in hippocampal CAl pyramidal neurons. J Cereb Blood Flow Metab 18:1088–1098

    Article  PubMed  CAS  Google Scholar 

  21. Mitani A, Watanabe M, Kataoka K (1998) Functional change of NMDA receptors related to enhancement of susceptibility to neurotoxicity in the developing pontine nucleus. J Neurosci 18:7941–7952

    PubMed  CAS  Google Scholar 

  22. Morioka T, Kalehua AN, Streit WJ (1991) The microglial reaction in the rat dorsal hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metab 11:966–973

    Article  PubMed  CAS  Google Scholar 

  23. Naritomi H, Shimizu T, Oe H, Kinugawa H, Sawada T, Hirata T (1996) Mild hypothermia therapy in acute embolic stroke: A pilot study. J Stroke Cerebrovasc Dis 6 (Suppl 1):193–196

    Google Scholar 

  24. Rosomoff HL, Holaday DA (1954) Cerebral blood flow and cerebral oxygen consumption during hypothermia. Am J Physiol 179:85–88

    PubMed  CAS  Google Scholar 

  25. Rosomoff HL (1956) Hypothermia and cerebral vascular lesions. I. Experimental interruption of the middle cerebral artery during hypothermia. J Neurosurg 13:332–343

    Google Scholar 

  26. Si Q-S, Nakamura Y, Kataoka K (1997) Hypothermic suppression of microglial activation in culture: Inhibition of cell proliferation and production of nitric oxide and superoxide. Neuroscience 81:223–229

    Google Scholar 

  27. Si Q-S, Nakamura Y, Kataoka K (1997) Albumin enhances superoxide production in cultured microglia. Glia 21:413–418

    Article  PubMed  CAS  Google Scholar 

  28. Takagi K, Ginsberg MD, Globus MY-T, Martinez E, Busto R (1994) Effect of hyperthermia on glutamate release in ischemic penumbra after middle cerebral artery occlusion in rats. Am J Physiol 266:H1770-H1776

    Google Scholar 

  29. Thoresen M, Wyatt J (1997) Keeping a cool head, post-hypoxic hypothermia—an old idea revisited. Acta Paediatr 86:1029–1033

    Article  PubMed  CAS  Google Scholar 

  30. Widmann R, Kuroiwa T, Bonnekoh P, Hossmann K-A (1991) [14C]Leucine incorporation into brain proteins in gerbils after transient ischemia: Relationship to selective vulnerability of hippocampus. J Neurochem 56:789–796

    Article  PubMed  CAS  Google Scholar 

  31. Yanamoto H, Hong S-C, Soleau S, Kassell NF, Lee KS (1996) Mild postischemic hypothermia limits cerebral injury following transient focal ischemia in rat neocortex. Brain Res 718:207–211

    Article  PubMed  CAS  Google Scholar 

  32. Yanase H, Mitani A, Kataoka K (1995) Post-ischemic enhancement of calcium mobilization to NMDA, and the effect of hypothermia. J Neurochem 65:17

    Google Scholar 

  33. Ying HS, Weishaupt JH, Grabb M, Canzoniero LMT, Sensi SL, Sheline CT, Monyer H, Choi DW (1997) Sublethal oxygen-glucose deprivation alters hippocampal neuronal AMPA receptor expression and vulnerability to kainate-induced death. J Neurosci 17:9536–9544

    PubMed  CAS  Google Scholar 

  34. Yoneda Y, Ogita K, Inoue K, Mitani A, Zhang L, Masuda S, Higashihara M, Kataoka K (1994) Rapid potentiation of DNA binding activities of particular transcription factors with leucinezipper motifs in discrete brain structures of the gerbil with transient forebrain ischemia. Brain Res 667:54–66

    Article  PubMed  CAS  Google Scholar 

  35. Yoneda Y, Azuma Y, Inoue K, Ogita K, Mitani A, Zhang L, Masuda S, Higashihara M, Kataoka K (1997) Positive correlation between prolonged potentiation of binding of double-stranded oligonucleotide probe for the transcription factor API and resistance to transient forebrain ischemia in gerbil hippocampus. Neuroscience 79:1023–1037

    Article  PubMed  CAS  Google Scholar 

  36. Zhang L, Mitani A, Yanase H, Kataoka K (1997) Continuous monitoring and regulating of brain temperature in the conscious and freely moving ischemic gerbil: effect of MK-801 on delayed neuronal death in hippocampal CAl. J Neurosci Res 47:440–448

    Article  PubMed  CAS  Google Scholar 

  37. Zhang R-L, Chopp M, Chen H, Garcia JH, Zhang ZG (1993) Postischemic (1 hour) hypothermia significantly reduces ischemic cell damage in rats subjected to 2 hours of middle cerebral artery occlusion. Stroke 24:1235–1240

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Tokyo

About this paper

Cite this paper

Yanase, H., Kataoka, K. (2000). Neuroprotective Effect of Mild Hypothermia in Experimental Brain Ischemia. In: Hayashi, N. (eds) Brain Hypothermia. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66882-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66882-4_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-70277-1

  • Online ISBN: 978-4-431-66882-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics