Skip to main content

An Overview: Spinal Tissue Vital Biomechanics for Clinicians

  • Conference paper
Spinal Disorders in Growth and Aging

Abstract

This article summarizes some physiology learned after 1964 about bone, cartilage, and fibrous tissues. It complements other cellular, molecular-biologic, and physiologic knowledge and by the next decade should be essential to the work of clinicians concerned with spinal problems. It belongs in a new paradigm of skeletal biology [1–30]. Its complexity requires extreme brevity and selectivity. If some find new ideas here, skeletal science’s poor interdisciplinary communication explains that. For simplicity, a single asterisk identifies facts, no matter how arcane they may seem. Double asterisks identify hypotheses considered true by most who are qualified to judge them. Triple asterisks identify clinicopathologic facts not yet studied systematically by basic scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burr DB, Martin RB (1989) Errors in bone remodeling: Toward a unified theory of metabolic bone disease. Am J Anat 186:1–31

    Article  Google Scholar 

  2. Frost HM (1987) The mechanostat: A proposed pathogenetic mechanism of osteo-poroses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 2:73–85

    PubMed  CAS  Google Scholar 

  3. Frost HM (1988) Vital biomechanics. Proposed general concepts for skeletal adaptations to mechanical usage. Calcif Tissue Int 42:145–155

    Article  PubMed  CAS  Google Scholar 

  4. Frost HM (1989) Tlie biology of fracture healing. Clin Orthop Rel Res. Part I: 248: 283–293; Part II: 248:294–309

    Google Scholar 

  5. Frost HM (1989) Some ABCs of skeletal pathophysiology I: Introduction to the series. Calc Tiss Int 45:1–3

    Article  CAS  Google Scholar 

  6. Frost HM (1989) Some ABCs of skeletal pathophysiology II: General mediator mechanism properties. Calc Tiss Int 45:68–70

    Article  CAS  Google Scholar 

  7. Frost HM (1990) Structural adaptations to mechanical usage (SATMU): 1. Redefining Wolffs Law: The bone modeling problem. Anat Rec 226:403–413

    Article  PubMed  CAS  Google Scholar 

  8. Frost HM (1990) Structural adaptations to mechanical usage (SATMU): 2. Redefining Wolffs Law: The bone remodeling problem. Anat Rec 226:414–422

    Article  PubMed  CAS  Google Scholar 

  9. Frost HM (1990) Structural adaptations to mechanical usage (SATMU): 3. The hyaline cartilage modeling problem. Anat Rec 226:423–432

    Article  PubMed  CAS  Google Scholar 

  10. Frost HM (1990) Structural adaptations to mechanical usage (SATMU): 4. Mechanical influences on fibrous tissues. Anat Rec 226:433–439

    Article  PubMed  CAS  Google Scholar 

  11. Frost HM (1991) Some ABC’s of skeletal pathophysiology. 5. Microdamage physiology. Calc Tiss Int 49:229–231

    Article  CAS  Google Scholar 

  12. Frost HM (1991) Some ABC’s of skeletal pathophysiology. 6. The growth/modeling/ remodeling distinction. Calc Tiss Int 49:301–302

    Article  CAS  Google Scholar 

  13. Frost HM (1991) Some ABC’s of skeletal pathophysiology. 7. Tissue mechanisms controlling bone mass. Calc Tiss Int 49:303–304

    Article  CAS  Google Scholar 

  14. Frost HM (1992) Perspectives: The role of changes in mechanical usage setpoints in the pathogenesis of osteoporosis. J Bone Miner Res 7:253–261

    Article  PubMed  CAS  Google Scholar 

  15. Frost HM (1992) Perspectives: On artificial joint design. J Long Term Eff Med Implants 2:9–35

    PubMed  CAS  Google Scholar 

  16. Frost HM (1994) Introduction to Skeletal Physiology. I. Bone and Bones. Schuster’s, Pueblo

    Google Scholar 

  17. Frost HM (1994) Introduction to Skeletal Physiology. II. Fibrous Tissue, Cartilage and Synovial Joints. Schuster’s, Pueblo

    Google Scholar 

  18. Frost HM (1992) Nature’s mechanical usage windows for bone. Schuster’s, Pueblo

    Google Scholar 

  19. Jee WSS (1989) The skeletal tissues. In: Weiss L (ed) Cell and tissue biology. A textbook of histology. Urban and Schwartzenberg, Baltimore, pp 211–259

    Google Scholar 

  20. Jee WSS (1990) Local and systemic factors influencing bone formation. In: Takahashi H (ed) Bone morphometry Nishimura, Niigata, pp 284–289

    Google Scholar 

  21. Jee WSS, Li XJ (1990) Adaptation of cancellous bone to overloading in the adult rat: A single photon absorptiometry and histomorphometry study. Anat Rec 227: 418–426

    Article  PubMed  CAS  Google Scholar 

  22. Jee WSS, XJ Li, MB Schaffler (1991) Adaptation of diaphyseal structure with aging and increased mechanical usage in the adult rat. A histomorphometrical and bio-mechanical study. Anat Rec 230:332–338

    Article  PubMed  CAS  Google Scholar 

  23. Jee WSS, Mori X, Li X, Chan S (1990) Prostaglandin E2 enhances cortical bone mass and activates intracortical bone remodeling in intact and overiectomized female rats. Bone 11:253–266

    Article  PubMed  CAS  Google Scholar 

  24. Li XJ, Jee WSS (1990) Adaptation of diaphyseal structure to aging and decreased mechanical loading in the adult rat. A densitometric and histomorphometric study. Anat Rec 229:291–297

    Article  Google Scholar 

  25. Li XJ, Jee WSS, Chow S-Y, Woodbury DM (1990) Adaptation of cancellous bone to aging and immobilization in the rat. A single photon absorptiometry and histomorphometry study. Anat Rec 227:12–24

    Article  PubMed  CAS  Google Scholar 

  26. Martin RB, Burr DB (1989) Structure, Function and Adaptation of Compact Bone. Raven, New York.

    Google Scholar 

  27. Martin RB, Burr DB, Radin EL (1983) Threshold values of the production of fatigue damage in bone in vivo. Orth Res Soc Abstr 29:69

    Google Scholar 

  28. Nordin RW, Jee WS, High WB (1990) The role of prostaglandins in bone in vivo. Prostaglandins Leukot Essent Fatty Acids 41:139–149

    Article  Google Scholar 

  29. Recker RR (1983) Bone histomorphometry. Techniques and interpretation. CRC, Boca Raton

    Google Scholar 

  30. Schaffler MB (1985) Stiffness and fatigue of compact bone at physiological strain and strain rates. Thesis, West Virginia University, Morgantown

    Google Scholar 

  31. Frost HM (1986) Intermediary Organization of the Skeleton, vols I, II. CRC, Boca Raton

    Google Scholar 

  32. Nordin M, Frankel VH (1989) Basic biomechanics of the musculoskeletal system, 2nd edn. Lea and Febiger, Philadelphia

    Google Scholar 

  33. Burr DB, Stafford T (1990) Validity of the bulk staining technique to separate artifactual from in vivo microdamage. Clin Orthop Rel Res 260:305–308

    Google Scholar 

  34. Caler WE, Carter DR (1989) Bone creep-fatigue damage accumulation. J Biomech 22:625–635

    Article  PubMed  CAS  Google Scholar 

  35. Chamay A (1970) Mechanical and morphological aspects of experimental overload and fatigue in bone. J Biomech 3:262–270

    Article  Google Scholar 

  36. Freeman MAR, Todd RC, Pirie CJ (1974) The role of fatigue in the pathogenesis of senile femoral neck fracture. J Bone and Jt Surg 56B:898–905

    Google Scholar 

  37. Frost HM (1960) Presence of microscopic cracks in vivo in bone. Henry Ford Hosp Med Bull 8:27–35

    Google Scholar 

  38. Frost HM (1963) An Introduction to Biomechanics. Charles C Thomas, Springfield.

    Google Scholar 

  39. Koszyca B, Fazzalari NL, Vernon-Roberts B (1989) Trabecular microfractures. Clin Orthop Rel Res 244:208–216

    Google Scholar 

  40. Shapiro F, Glimcher MJ (1980) Induction of osteoarthritis in the rabbit knee joint: Histologic changes following meniscectomy and meniscal lesions. Clin Orthop Rel Res 147:287–295

    Google Scholar 

  41. Takahashi H (1990) Bone morphometry (ed). Nishimura, Niigata.

    Google Scholar 

  42. Albright JA, Brand RA (1987) The scientific basis of orthopaedics 2nd edn. Appleton and Lange, Norwalk

    Google Scholar 

  43. Anderson WAD, Kissane JM (1977) Pathology, 7th edn. Mosby, St Louis

    Google Scholar 

  44. Courpron P (1981) Bone tissue mechanisms underlying osteoporoses. Orthop Clin N Am 12:513–546

    CAS  Google Scholar 

  45. Woodard JC (1991) Morphology of fracture nonunion and osteomyelitis. Vet Clin N Am 21:813–844

    CAS  Google Scholar 

  46. Biewener AA (1990) Biomechanics of mammalian terrestrial locomotion. Science 23:1097–1103

    Article  Google Scholar 

  47. Carter DR (1987) Mechanical loading history and skeletal biology. J Biomech 20:1095–1109

    Article  PubMed  CAS  Google Scholar 

  48. Carter DR, Wong M (1988) The role of mechanical loading histories in the development of diarthrodial joints. J Orthop Res 6:804–816

    Article  PubMed  CAS  Google Scholar 

  49. Frost HM (1972) The Physiology of Bone, Cartilage and Fibrous Tissue. Charles C Thomas, Springfield

    Google Scholar 

  50. Frost HM (1973) Orthopaedic Biomechanics. Charles C Thomas, Springfield

    Google Scholar 

  51. Fondrk M, Bahniuk E, Davy D (1990) Transient creep behavior of cortical bone. ORS Abstracts 15:49

    Google Scholar 

  52. Frost HM (1986) Biomechanical determinants of the arthroses. Text distributed at the annual Hard Tissue Workshop organized by Prof WSS Jee

    Google Scholar 

  53. Duncan H, Frame B, Arnstein AR, Frost HM (1973) Migratory osteolysis of the lower extremities. Ann Int Med 66:1165–1173

    Google Scholar 

  54. Langloh ND, Hunder GG, Riggs BL, Kelley PJ (1973) Transient painful osteoporoses of the lower extremities. J Bone and Jt Surg 55A:1188–1196

    Google Scholar 

  55. Martin RB (1987) Osteonal remodeling in response to screw implantation in the canine femur. J Orthop Res 5:445–454

    Article  PubMed  CAS  Google Scholar 

  56. Duncan CP, Shim S (1977) The autonomic nerve supply of bone. J Bone Joint Surg 59B:323–324

    Google Scholar 

  57. Fuller M, Grigg P, Hoffman A (1990) Joint capsule mechanoreceptors: Sensors or strain or load? ORS Abstracts 15:3

    Google Scholar 

  58. Johansson H, Soika P (1991) A sensory role for the cruciate ligaments. Clin Orthop Rel Res 268:161–178

    Google Scholar 

  59. Miller MR, Kasahara M (1963) Observations on the innervation of human long bones. Anat Rec 145:13–17

    Article  Google Scholar 

  60. Burstein AH, Reilly DT (1976) Aging of bone tissue: Mechanical properties. J Bone Joint Surg 58A:82–86

    Google Scholar 

  61. Akeson WH, Amiel D, Ing D, Abel MF, Garfin SR, Woo SL-Y (1987) Effects of immoblization on joints. Clin Orthop Rel Res 219:28–37

    CAS  Google Scholar 

  62. Jubb KVF, Kennedy PC, Palmer N (1985) Pathology of domestic animals. Academic, New York

    Google Scholar 

  63. Frost HM (1987) Osteogenesis imperfecta. The setpoint proposal. Clin Orthop Rel Res 216:280–297

    Google Scholar 

  64. O’Connor JA, Lanyon LE, MacFie H (1982) The influence of strain rate on adaptive bone remodeling. J Biomech 15:767–781

    Article  PubMed  Google Scholar 

  65. Pollack (1990) Electrical effects on bone: Relationship to bone remodeling. In: Bone morphometry. H Takahashi (ed). Nishimura, Niigata, pp 170–176

    Google Scholar 

  66. Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone and Jt Surg 66A:308–314

    Google Scholar 

  67. Johnson LC (1964) Morphologic analysis in pathology: The kinetics of disease and general biology of bone. In: Frost HM (ed) Bone Biodynamics. Little-Brown, Boston, pp 543–654

    Google Scholar 

  68. Takahashi H, Frost HM (1965) Correlation between body habitus and cross sectional area of ribs. Can J Physiol Pharmacol 43:773–782

    Article  Google Scholar 

  69. Takahashi H, Frost HM (1966) Age and sex related changes in the amount of cortex in human ribs. Acta Orthop Scand 37:122–130

    Article  PubMed  CAS  Google Scholar 

  70. Anderson C, Cape RDT, Crilly RG, Hodsman AB, Wolfe BMJ (1984) Preliminary observations of a form of coherence therapy for osteoposis. Calcif Tissue Int 36:341–343

    Article  PubMed  CAS  Google Scholar 

  71. Compston J, Mellish RWE, Garrahan NJ, Croucher PI (1990) Structural mechanisms of trabecular bone loss in normal subjects. In: Takahashi H (ed) Bone histomorphometry. Nishimura, Niigata pp 371–374

    Google Scholar 

  72. Eriksen EF (1986) Normal and pathological remodeling of humant trabecular bone: Three-dimensional reconstruction of the remodeling sequence in normals and in metabolic bone disease. Endocr Rev 7:379–408

    Article  PubMed  CAS  Google Scholar 

  73. Frost HM (1964) Mathematical Elements of Lamellar bone Remodelling. Charles C Thomas, Springfield

    Google Scholar 

  74. Kimmel DB, Recker RR, Gallagher JC, Vaswani AS, Aloia JF (1990) A comparison of iliac bone histomorphometric data in postmenopausal osteoporotic and normal subjects. Bone and Min 11:217–246

    Article  CAS  Google Scholar 

  75. Takahashi H, Epker BN, Frost HM (1964) Resorption precedes formative activity. Surg Forum 15:437–438

    PubMed  CAS  Google Scholar 

  76. Mellish RW, Garrahan NJ, Compston JE (1989) Age-related changes in trabecular width and spacing in human iliac crest biopsies. Bone and Min 6:331–338

    Article  CAS  Google Scholar 

  77. Smith EL, Gilligan C (1989) Mechanical forces and bone. Bone Miner Res 6:139–173

    Google Scholar 

  78. Uhthoff H, Jaworski ZFG (1978) Bone loss in response to long-term immobilization. J Bone and Jt Surg 60B:420–429

    Google Scholar 

  79. Hori M, Uzawa T, Morita L, Noda T, Takahashi H, Inoue J (1988) Effect of human parathyroid hormone (PTH(l–34)) on experimental osteopenia of rats induced by ovariectomy. Bone and Min 3:193–199

    CAS  Google Scholar 

  80. Arnold JS (1981) Trabecular patterns and shapes in aging and osteoporosis. In: Jee WSS, Paifitt Am (eds) Bone histomorphometry. Armour Montagu, Paris, pp 297–310

    Google Scholar 

  81. Cowin SC (1989) Bone Mechanics (ed). CRC, Boca Raton

    Google Scholar 

  82. Currey JD (1984) The mechanical adaptations of bones. Princeton University Press, Princeton

    Google Scholar 

  83. Duncan H, Jundt J, Riddle JM, Pitchford W, Christopher T (1987) The tibial subchondral plate. A scanning electron microscopic study. J Bone Joint Surg 69A: 1212–1220

    Google Scholar 

  84. Amiel D, Akeson WH, Harwood FL, Frank CB (1983) Stress deprivation effect on metabolic turnover of the medial collateral ligament collagen. A comparison between nine- and twelve-week immobilization. Clin Orthop Rel Res 172:265–270

    CAS  Google Scholar 

  85. Dahners LE, Muller P (1988) The effects of the application of tension on ligament growth. OES Abstracts 13:56

    Google Scholar 

  86. Frank C, Bodie M, Anderson M (1987) Growth of a ligament. ORS Abstracts 12:42

    Google Scholar 

  87. Sumpio BE, Bres AJ, Link WG, Johnson G Jr (1988) Enhanced collagen production by smooth muscle cells during repetitive mechanical stretching. Arch Surg 123:1233–1236

    Article  PubMed  CAS  Google Scholar 

  88. Sutker B, Lester G, Banes A, Dahners X (1990) Cyclic strain stimulates DNA and collagen synthesis in fibroblasts cultured from rat medial collateral ligaments. ORS Abstracts 15:130

    Google Scholar 

  89. Wessels WE, Dahners LE (1988) Growth of the deltoid ligament in the rabbit. ORS Abstracts 13:199

    Google Scholar 

  90. Wilson CJ (1988) An examination of the mechanism of ligament contracture. Clin Orthop Rel Res 227:286–291

    CAS  Google Scholar 

  91. Woo SL-Y, Gomez MA, Sites TJ, Newton PO, Orlando CA, Akeson WH (1987) The biomechanical and morphological changes in the medial collateral ligament of the rabbit after immobilization and remobilization. J Bone and Jt Surg 69A:1200–1211

    Google Scholar 

  92. Adams ME, Billingham MEJ (1982) Animal models of degenerative joint disease. In: Berry CL (ed) Bone and Joint Disease. Springer, Berlin Heidelberg New York, pp 265–298

    Chapter  Google Scholar 

  93. Frost HM (1994) Perspectives: a vital biomechanical model of synovial joint design. Anat Rec 240:1–18 92b. Frost HM (1994) Perspectives: a vital biomechanical model of the pathogenesis of arthroses. Anat Rec 240:19–31

    Article  PubMed  CAS  Google Scholar 

  94. Burr DB, Schaffler MB, Yang KH, Wu DD, Lukoschek M, Kandzari D, Sivaneri N, Blaha JD, Radin EL (1989) The effects of altered strain environments on bone tissue kinetics. Bone 10:215–221

    Article  PubMed  CAS  Google Scholar 

  95. Evans RA (1987) Is there a need for whole body physiology? Bone Miner 2:243–244

    Google Scholar 

  96. Fulkerson JP, Edwards CC, Chrisman OD (1987) Articular cartilage. In: Albright JA, Brand RA (eds) The Scientific Basis of Orthopaedics, 2nd edn. Appleton and Lange, Norwalk, pp 347–372

    Google Scholar 

  97. Tada K, Yamamuro T, Okumura R, Kasai R, Takahashi H (1990) Therapeutic effects of h-PTH(l–34) on skeletons of osteoporotic rats with parathyroidectomy. In: Takahashi H (ed) Bone morphometry. Nishimura, Niigata, pp 448–451

    Google Scholar 

  98. These colleagues include Profs. C Anderson, LV Avioli, DB Burr, H Duncan, ZFG Jaworski, WSS Jee, DH Kimmel, RB Martin, F Meisen, RW Norrdin, EL Radin, L Raisz, RR Recker, G Rodan, MB Schaffler, L Sokoloff, H Takahashi, MR Urist, D van Sickle, JC Woodard, TJ Wronski

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Japan

About this paper

Cite this paper

Frost, H.M. (1995). An Overview: Spinal Tissue Vital Biomechanics for Clinicians. In: Takahashi, H.E. (eds) Spinal Disorders in Growth and Aging. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66939-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66939-5_10

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66941-8

  • Online ISBN: 978-4-431-66939-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics