Skip to main content

Linear Processes in Stratified Turbulence with Rotation or Mean Shear

  • Conference paper
Statistical Theories and Computational Approaches to Turbulence
  • 277 Accesses

Abstract

Linear processes of the unsteady turbulence in stratified flow with system rotation or mean shear are analysed by the rapid distortion theory (RDT). In stratified rotating turbulence, the ratio of Coriolis parameter f to Brunt-Väisälä frequency N, i.e. f/N, determines the steady components of energy and the phase of energy/flux oscillation. On the other hand, unsteady aspects are dominated by stratification, and the energy/flux oscillates at frequency ~ 2N as in the flow with only stratification. For stratified shear flow, the energy or the flux again oscillates at frequency 2N, although the shear distorts the energy spectra so that they are more localized to smaller stream-wise wavenumbers (k 1 → 0). The results show that neither rotation nor mean shear affects the wave number components which dominate the buoyancy oscillation of the energy and the flux.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartello, P. Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci. 52, 4410–4428 (1995)

    Article  MathSciNet  Google Scholar 

  2. Batchelor, G. K., Proudman, I. The effect of rapid distortion on a fluid in turbulent motion. Q. J. Mech. Appl. Maths. 7, 83–103 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bardina, J., Ferziger, J. H. & Rogallo, R. S. Effect of rotation on isotropic turbulence: computation and modelling. J. Fluid Mech. 154, 321–336 (1985)

    Article  Google Scholar 

  4. Cambon, C. Turbulence and vortex structures in rotating and stratified flows. Eur. J. Mech. B-Fluids 20, 489–510 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Derbyshire, S. H. & Hunt, J. C. R. ’Structure of turbulence in stably stratified atmospheric boundary layers; Comparison of large eddy simulations and theoretical results’. In: Waves and Turbulence in Stably Stratified Flows, ed. by S. D. Mobbs and J. C. King, (Clarendon Press 1993) pp. 23–59

    Google Scholar 

  6. Gerz, T. Schumann, U. & Elghobashi, S. E. Direct numerical simulation of stratified homogeneous turbulent shear flows. J. Fluid Mech. 200, 563–594 (1989)

    Article  MATH  Google Scholar 

  7. Gerz, T. & Yamazaki, H. Direct numerical simulation of buoyancy-driven turbulence in stably stratified fluid. J. Fluid Mech. 249, 415–440 (1993)

    Article  Google Scholar 

  8. Hanazaki, H. ’On the transport mechanisms in stably stratified rotating turbulence’. In: Turbulence, Heat and Mass Transfer 3, ed. by Y. Nagano, K. Hanjalic & T. Tsuji, (Aichi Shuppan 2000) pp. 639–644

    Google Scholar 

  9. Hanazaki, H. Linear processes in stably and unstably stratified rotating turbulence. J. Fluid Mech. in press, (2002)

    Google Scholar 

  10. Hanazaki, H. & Hunt, J. C. R. Linear processes in unsteady stably stratified turbulence. J. Fluid Mech. 318, 303–337 (1996)

    Article  MATH  Google Scholar 

  11. Hanazaki, H. & Hunt, J. C. R. ’Linear processes in unsteady stratified sheared turbulence’. In: IUTAM Symp. on Geometry and Statistics of Turbulence, ed. by T. Kambe, T. Nakano & T. Miyauchi, (Kluwer 2001) pp. 291–296

    Google Scholar 

  12. Hanazaki, H. & Hunt, J. C. R. Structures of unsteady stably stratified turbulence with mean shear. submitted to J. Fluid Mech. (2002)

    Google Scholar 

  13. Holt, S. E., Koseff, J. R. & Ferziger, J. H. A numerical study of the evolution and structure of homogeneous stably stratified turbulence. J. Fluid Mech. 237, 499–539 (1992)

    Article  MATH  Google Scholar 

  14. Hunt, J. C. R., Stretch, D. D. & Britter, R. E. ’Length scales in stably stratified turbulent flows and their use in turbulence models’. In: Stably Stratified Flow and Dense Gas Dispersion, ed. by J. S. Puttock, (Clarendon Press 1988), pp. 285–321

    Google Scholar 

  15. Iida, O. & Nagano, Y. Coherent structure and heat transfer in geostrophic flow under density stratification. Phys. Fluids 11, 368–377 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Itsweire, E. C, Heiland, K. N. & Van Atta, C. W. The evolution of grid-generated turbulence in a stably stratified fluid. J. Fluid Mech. 162, 299–338 (1986)

    Article  Google Scholar 

  17. Jacobitz, F. G., Sarker, S. & Van Atta, C. W. Direct numerical simulation of the turbulence evolution in a uniformly sheared and stably stratified flow. J. Fluid Mech. 342, 231–261 (1997)

    Article  MATH  Google Scholar 

  18. Kaltenbach, H. -J., Gerz, T. & Schumann, U. Large eddy simulation of homogeneous turbulence and diffusion in stably stratified shear flow. J. Fluid Mech. 280, 1–40 (1994)

    Article  MATH  Google Scholar 

  19. Kaneda, Y. Single-particle diffusion in strongly stratified and/or rapidly rotating turbulence. J. Phys. Soc. Japan 69, 3847–3852 (2000)

    Article  Google Scholar 

  20. Kaneda, Y. & Ishida, T. Suppression of vertical diffusion in strongly stratified turbulence. J. Fluid Mech. 402, 311–327 (2000)

    Article  MATH  Google Scholar 

  21. Kimura, Y. & Herring, J. R. Diffusion in stably stratified turbulence. J. Fluid Mech. 328, 253–269 (1996)

    Article  MATH  Google Scholar 

  22. Komori, S. & Nagata, K. Effects of molecular diffusivities on counter-gradient scalar and momentum transfer in strongly stable stratification. J. Fluid Mech. 326, 205–237 (1996)

    Article  Google Scholar 

  23. Komori, S., Ueda, H., Ogino, F. & Mizushina, T. Turbulence structure in stably stratified open-channel flow. J. Fluid Mech. 130, 13–26 (1983)

    Article  Google Scholar 

  24. Lienhard, J. H. & Van Atta, C. W. The decay of turbulence in thermally stratified flow. J. Fluid Mech. 210, 57–112 (1990)

    Article  Google Scholar 

  25. Métais, O., Bartello, P., Garnier, E., Riley, J. J. & Lesieur, M. Inverse cascade in stably stratified rotating turbulence. Dyn. Atmos. Oceans 23, 193–203 (1996)

    Article  Google Scholar 

  26. Métais, O. & Herring, J. Numerical simulations of freely evolving turbulence in stably stratified fluids. J. Fluid Mech. 202, 117–148 (1989).

    Article  Google Scholar 

  27. Miles, J. W. On the stability of heterogeneous shear flow, J. Fluid Mech. 10, 496–508 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  28. Piccirillo, P. & Van Atta, C. W. The evolution of a uniformly sheared thermally stratified turbulent flow. J. Fluid Mech. 334, 61–86 (1997)

    Article  Google Scholar 

  29. Riley, J. J., Metcalfe, R. W. & Weissman, M. A. ’Direct numerical simulations of homogeneous turbulence in density stratified fluids’. In: Nonlinear Properties of Internal Waves, AIP Conference Proc. vol.76, (American Institute of Physics 1981), pp. 79–112

    Chapter  Google Scholar 

  30. Rohr, J. J., Itsweire, E. C, Heiland, K. N. & Van Atta, C. W. Growth and decay of turbulence in a stably stratified shear flow. J. Fluid Mech. 195, 77–111 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Saffman, P. G. The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27, 581–593 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  32. Staquet, C. & Godeferd, F. S. Statistical modelling and direct numerical simulations of decaying stably stratified turbulence. Part 1. Flow energetics. J. Fluid Mech. 360, 295–340 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stretch, D. D. The dispersion of slightly dense contaminations in a turbulent boundary layer. Ph.D. Thesis, Dept. of Engineering, University of Cambridge (1986)

    Google Scholar 

  34. Townsend, A. A. The Structure of Turbulent Shear Flow. (Cambridge University Press 1976), pp. 429

    MATH  Google Scholar 

  35. Tsujimura, S., Iida, O. & Nagano, Y. ’Effects of rotation on unstably stratified turbulence’. In: Proc. Int. Conf. on Turbulent Heat Transfer 2, Manchester, U. K. vol. 1, 5–58 – 5–71 (1998)

    Google Scholar 

  36. Yoon, K. & Warhaft, Z. The evolution of grid generated turbulence under conditions of stable thermal stratification. J. Fluid Mech. 215, 601–638 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this paper

Cite this paper

Hanazaki, H. (2003). Linear Processes in Stratified Turbulence with Rotation or Mean Shear. In: Kaneda, Y., Gotoh, T. (eds) Statistical Theories and Computational Approaches to Turbulence. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67002-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67002-5_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67004-9

  • Online ISBN: 978-4-431-67002-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics