Skip to main content

Neuronal Protection by Nitric Oxide-Related Species

  • Chapter
Nitric Oxide in the Eye

Abstract

As endogenous sources of oxidizing and reducing agents have been discovered, redox modulation of protein function has been recognized to be an important mechanism for many cell types. For our purposes, we confine our review of redox modulation to covalent modification of sulfhydryl (thiol) groups on protein cysteine residues with special reference to the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor in the brain. If the cysteine sulfhydryls possess a sufficient redox potential, oxidizing agents can react to form adducts on single sulfhydryl (thiol, -SH) groups; or if two free sulfhydryl groups are vicinal (in close proximity), disulfide bonds may be formed. Reducing agents can regenerate free sulfhydryl (thiol, -SH) groups by donating electron(s). Considering endogenous redox agents, in addition to the usual suspects including glutathione, ascorbate, vitamin E, lipoic acid, and reactive oxygen species, nitric oxide (NO) and its redox-related species have come to the fore. This has occurred largely because of the rediscovery and application to biological systems of work from the early part of the twentieth century showing the organic synthesis of nitrosothiols (RS-NO) (for review, Stamler et al. 1992). NO group donors represent different redox-related species of the NO group, each with its own distinctive chemistry, that lead to entirely different biological effects. NO-related species include nitric oxide (NO-) but also the other redox-related forms of the NO group: with one less electron (NO+, or nitrosonium ion) or one additional electron (NO-, or nitroxyl anion) (Stamler et al. 1992). Evidence suggests that all three of these redox-related forms or their functional equivalents are important pharmacologically and physiologically, participating in distinctive chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amelle DR, Stamler JS (1995) NO+, NO-, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys 318:279–285

    Article  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    Article  PubMed  CAS  Google Scholar 

  • Bolotina VM, Najibi S, Palacino JJ, Pagaon PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368:850–853

    Article  PubMed  CAS  Google Scholar 

  • Bonner FT, Stedman G (1996) The chemistry of nitric oxide and redox-related species. In: Feelisch M, Stamler JS (eds) Methods in nitric oxide research. Wiley, Chichester, pp 3–18

    Google Scholar 

  • Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santilliano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, Bredt DS (1996) Interaction of nitric oxide synthase with the postdynaptic density protein PSD-95 and α1-syntrophin mediated by PDZ domains. Cell 84:757–767

    Article  PubMed  CAS  Google Scholar 

  • Ciabarra AM, Sullivan JM, Gahn LG, Pecht G, Heinemann S, Sevarino KA (1995) Cloning and characterization of χ-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci 15:6498–6508

    PubMed  CAS  Google Scholar 

  • Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88:6368–6371

    Article  PubMed  CAS  Google Scholar 

  • Fagni L, Olivier M, Lafon-Cazal M, Bockaert J (1995) Involvement of divalent ions in the nitric oxide-induced blockade of N-methyl-D-aspartate receptors in cerebellar granule cells. Mol Pharmacol 47:1239–1247

    PubMed  CAS  Google Scholar 

  • Gow AJ, Buerk DG, Ischiropoulos H (1997) A novel reaction mechanism for the formation of S-nitrosothiol in vivo. J Biol Chem 272:2841–2845

    Article  PubMed  CAS  Google Scholar 

  • Hess DT, Patterson SI, Smith DS, Skene JHP (1993) Neuronal growth cone collapse and inhibition of protein fatty acylation by nitric oxide. Nature 366:562–565

    Article  PubMed  CAS  Google Scholar 

  • Hoyt KR, Tang L-H, Aizenman E, Reynolds IJ (1992) Nitric oxide modulates NMDA-induced increases in intracellular Ca2+ in cultured rat forebrain neurons. Brain Res 592:310–316

    Article  PubMed  CAS  Google Scholar 

  • Kim W-K, Rayudu PV, Mullins ME, Stamler JS, Lipton SA (1996) Down regulation of NMDA receptor activity in cortical neurons by peroxynitrite. In: Moncada S, Stamler JS, Gross S, Higgs EA (eds) The biology of nitric oxide. Part 5. Portland, London

    Google Scholar 

  • Kohr G, Eckardt S, Lüddens H, Monyer H, Seeburg PH (1994) NMDA receptor channels: subunit-specific potentiation by reducing agents. Neuron 12:1031–1040

    Article  PubMed  CAS  Google Scholar 

  • Lei SZ, Pan Z-H, Aggarwal SK, Chen H-SV, Hartman J, Sucher NJ, Lipton SA (1992) Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron 8:1087–1099

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Stamler JS (1994) Actions of redox-related congeners of nitric oxide at the NMDA receptor. Neuropharmacology 33:1229–1233

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Yang YF (1996) NO-related species can protect from focal cerebral ischemia/reperfusion. In: Krieglstein J (ed) Pharmacology of cerebral ischemia. Med-pharm Scientific, Stuttgart, pp 183–191

    Google Scholar 

  • Lipton SA, Choi Y-B, Pan Z-H, Lei SZ, Chen H-SV, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Choi Y-B, Sucher NJ, Pan Z-H, Stamler JS (1996a) Redox state, NMDA receptors, and NO-related species. Trends Pharmacol Sci 17:186–187

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Kim W-K, Rayudu PV, Asaad W, Amelle DR, Stamler JS (1996b) Singlet and triplet nitroxyl anion (NO-) lead to N-methyl-D-aspartate (NMDA) receptor down-regulation and neuroprotection. In: Stamler Gross JS, Moncada S (eds) The biology of nitric oxide. Portland, London

    Google Scholar 

  • Manzoni O, Bockaert J (1993) Nitric oxide synthase activity endogenously modulates NMDA receptors. J Neurochem 61:368–370

    Article  PubMed  CAS  Google Scholar 

  • Manzoni O, Prezeau L, Marin P, Deshager S, Bockaert J, Fagni L (1992) Nitric oxide-induced blockade of NMDA receptors. Neuron 8:653–662

    Article  PubMed  CAS  Google Scholar 

  • Nikitovic D, Holmgren A (1996) 5-Nitrosoglutàthione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J Biol Chem 271:19180–19185

    Article  PubMed  CAS  Google Scholar 

  • Omerovic A, Chen S-J, Leonard JP, Kelso SR (1995) Subunit-specific redox modulation of NMDA receptros expressed in Xenopus oocytes. J Recept Signal Transduct Res 15:811–827

    Article  PubMed  CAS  Google Scholar 

  • Pryor WA, Lightsey JW (1981) Mechanisms of nitrogen dioxide reactions: initiation of lipid peroxidation and the production of nitrous acid. Science 214:435–437

    Article  PubMed  CAS  Google Scholar 

  • Pryor WA, Church DF, Govinden CK, Crank G (1982) Oxidation of thiols by nitric oxide and nitrogen dioxide: synthetic utility and toxicological implications. J Org Chem 47:156–159

    Article  CAS  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls: the cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266:4244–4250

    PubMed  CAS  Google Scholar 

  • Sathi S, Edgecomb P, Warach S, Manchester K, Donaghey T, Stieg PE, Jensen FE, Lipton SA (1993) Chronic transdermal nitroglycerin (NTG) is neuroprotective in experimental rodent stroke models. Soc Neurosci Abstr 19:849

    Google Scholar 

  • Schmidt HHHW, Holman H, Schindler U, Shutenko ZS, Cunningham DD, Feelisch M (1996) No NO from NO synthase. Proc Natl Acad Sci USA 93:14492–14497

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78:931–936

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox activated forms. Science 258:1898–1902

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Toone EJ, Lipton SA, Sucher NJ (1997) (S)NO signals: translocation, regulation, and a consensus motif. Neuron 18:691–696

    Article  PubMed  CAS  Google Scholar 

  • Sucher NJ, Schahram A, Chi CL, Leclerc CL, Awobuluyi M, Deitcher DL, Wu MK, Yuan JP, Jones EG, Lipton SA (1995) Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci 15:6509–6520

    PubMed  CAS  Google Scholar 

  • Sucher NJ, Awobuluyi M, Choi Y-B, Lipton SA (1996) NMDA receptors: from genes to channels. Trends Pharmacol Sci 17:348–355

    PubMed  CAS  Google Scholar 

  • Sullivan JM, Traynelis SF, Chen H-SV, Escobar W, Heinemann SF, Lipton SA (1994) Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron 13:929–936

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Lipton, S.A., Choi, YB., Sucher, N.J., Chen, H.SV. (2000). Neuronal Protection by Nitric Oxide-Related Species. In: Kashii, S., Akaike, A., Honda, Y. (eds) Nitric Oxide in the Eye. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67949-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67949-3_9

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68017-8

  • Online ISBN: 978-4-431-67949-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics