Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 81))

Abstract

The alkali fullerides, (AC60)n with A= K, Rb, Cs are conducting crystalline polymers in which covalently bonded ions form parallel linear chains. The polymerization depolymerization transition at about 400 K is reversible. Unlike other alkali fulleride compounds the polymers are stable in air. Structural aspects are discussed together with electron and nuclear magnetic resonance and frequency dependent conductivity. At ambient temperatures all polymers are strongly correlated metals. (KC60)n remains metallic to low temperatures. (RbC60)n and (CsC60)n have a metal insulator transition below 50 K. Magnetic data indicate that these systems may have quasi one dimensional electronic structures and that the ground state is an ordered spin density wave state. The opposing view believes (AC60)n are 3D conductors like doped (CH)x and (SN)x which are anisotropic but are not quasi one dimensional conductors in spite of the linear chain polymeric structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl and R.E. Smalley, Nature 318, 162 (1985).

    Article  ADS  Google Scholar 

  2. J. Winter and H. Kuzmany, Solid State Commun., 84, 935 (1992).

    Article  ADS  Google Scholar 

  3. Q. Zhu, O. Zhou, J.E. Fischer, A.R. McGhie, W.J. Romanow, R.M. Strongin, M.A. Cichy and A.B. Smith III, Phys. Rev. B47, 13948 (1993);

    Article  Google Scholar 

  4. A. Janossy, O. Chauvet, S. Pekker, J.R. Cooper and L. Forro, Phys. Rev. Lett. 71, 1091 (1993);

    Article  ADS  Google Scholar 

  5. O. Chauvet, G. Oszlanyi, L. Forro, P.W. Stephens, M. Tegze, G. Faigel, and A. Janossy, Phys. Rev. Lett. 72, 2721 (1994);

    Article  ADS  Google Scholar 

  6. S. Pekker, L. Forro, L. Mihaly and A. Janossy, Solid State Commun., 90, 349 (1994);

    Article  ADS  Google Scholar 

  7. P.W. Stephens, G. Bportel, G. Faigel, M. Tegze, A. Janossy, S. Pekker, G. Oszlanyi and L. Forro, Nature 370, 636 (1994);

    Article  ADS  Google Scholar 

  8. S. Pekker, A. Janossy, L. Mihaly, O. Chauvet, M. Carrard and L. Forro, Science 265, 1077 (1994);

    Article  ADS  Google Scholar 

  9. Q. Zhu, Phys. Rev. B52, R723 (1995);

    Article  ADS  Google Scholar 

  10. R.W. Lof., M.A. van Veenendalal, B. Koopmans, H.T. Jonkman, and G.A. Sawatzky, Phys. Rev. Lett. 68, 3924 (1992);

    Article  ADS  Google Scholar 

  11. R. Tycko, G. Dabbagh, D.W. Murphy, Q. Zhu and J.E. Fischer, Phys. Rev. B52, R723 (1995);

    Article  Google Scholar 

  12. G. Oszlanyi, G. Bortel, G. Faigel, M. Tegze, L. Granasy, S. Pekker, P.W. Stephens, G. Bendele, R. Dinnebier, G. Mihaly, A. Janossy, O. Chauvet and L. Forro, Phys. Rev. B51, 12228 (1995);

    Article  Google Scholar 

  13. M. Kosaka, K. Tanigaki, T. Tanaka, T. Atake, A. Lappas and K. Prassides, Phys. Rev. B51, 12018 (1995);

    Article  Google Scholar 

  14. A. Lappas, M. Kosaka, K. Tanigaki and K. Prassides, J. Am. Chem. Soc. 117, 7560 (1995)

    Article  Google Scholar 

  15. R.L. Greene, G.B. Street and L.J. Suter, Phys. Rev. Lett. 34, 577 (1975);

    Article  ADS  Google Scholar 

  16. S.C. Erwin, G.V. Krishna and E.J. Mele, Phys. Rev. B51, 7345 (1995);

    Article  ADS  Google Scholar 

  17. M. Carrard, L. Forro, L. Mihaly and S. Pekker, Mol. Cryst. Liq. Cryst., submitted

    Google Scholar 

  18. G. Oszlanyi, G. Bortel, G. Faigel, M. Tegze, P.W. Stephens, and L. Forro, in Physics and Chemistry of Fullerenes and its Derivatives, H. Kuzmany, J. Fink M. Mehring and S. Roth, editors, World Scientific, p. 323 (1995);

    Google Scholar 

  19. T. Kalber, G. Zimmer and M. Mehring, Phys. Rev. B51, 16471 (1995); K.F. Thier, G. Zimmer, M. Mehring and F. Rachdi, preprint;

    ADS  Google Scholar 

  20. H. Alloul, V. Brouet, E. Lafontaine, L. Mauer and L. Forro, preprint;

    Google Scholar 

  21. L. Granasy, T. Kemeny, G. Oszlanyi, G. Bortel, G. Faigel, M. Tegze, S. Pekker, L. Forro, and A. Janossy, Solid State Commun., 97, 573 (1996);

    Article  ADS  Google Scholar 

  22. P.R. Sudan and K. Nemeth, Solid State Commun., 92, 407 (1994);

    Article  ADS  Google Scholar 

  23. S. Stafström, M. Boman and J. Fagerstrom, Europhys. Lett. 30, 295 (1995);

    Article  ADS  Google Scholar 

  24. K. Tanaka, Y. Matsuura, Y. Oshima and T. Yamabe, Solid State Commun., 93, 163 (1995);

    Article  ADS  Google Scholar 

  25. E.J. Mete, G.V. Krishna and S.C. Erwin, Phys. Rev B52, 12493 (1995);

    Article  Google Scholar 

  26. F. Bommeli, L. Degiorgi, P. Wachter, O. Legeza, A. Janossy G. Oszlanyi O. Chauvet and L. Forro, Phys. Rev. B51, 14791 (1995);

    Google Scholar 

  27. J. Hone, M.S. Fuhrer, K. Khazeni, and A. Zettl, Phys. Rev. B52, R8700 (1995);

    Article  ADS  Google Scholar 

  28. V. Brouet, H. Alloul, Y. Yoshinari and L. Forro, in Physics and Chemistry of Fullerenes and its Derivatives, H. Kuzmany, J. Fink M. Mehring and S. Roth, editors, World Scientific, p. 366 (1995);

    Google Scholar 

  29. H.J. Pedersen, J.C. Scott, and K. Bechgaard, Solid State Commun., 35, 207 (1980);

    Article  ADS  Google Scholar 

  30. G. Baumgartner, H. Alloul, unpublished;

    Google Scholar 

  31. Y.J. Uemura, K. Kojima, G.M. Luke, W.D. Wu, G. Oszlanyi, O. Chauvet and L. Forro, Phys. Rev. B52, R6991 (1995)

    Article  ADS  Google Scholar 

  32. W.A. MacFarlane, R.F. Kiefel, S. Dunsiger, J.E. Sonier and J.E. Fischer, Phys. Rev. B52, R6995 (1995);

    Article  ADS  Google Scholar 

  33. V. Brouet, H. Alloul, Y. Yoshinari, and L. Forro, preprint;

    Google Scholar 

  34. R.J. Elliott, Phys. Rev. 90, 266 (1954);

    Article  ADS  Google Scholar 

  35. Y. Tomkiewicz, E.M. Engler and T.D.Schultz, Phys. Rev. Lett. 35. 456 (1997)

    Article  ADS  Google Scholar 

  36. G. Oszlanyi, A. Janossy, S. Pekker, L. Forro (to be published)

    Google Scholar 

  37. G. Baumgartner, O. Chauvet, A. Sienkiewicz, S. Pekker and L. Forro, (to be published);

    Google Scholar 

  38. L. Forro, J.R. Cooper, G. Sekretarczyk, M. Krupski, K. Kamaras, J. Physique (1984);

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Tokyo

About this paper

Cite this paper

Jánossy, A., Pekker, S., Oszlányi, G., Korecz, L., Forró, L. (1996). Conducting fulleride polymers. In: Kajimura, K., Kuroda, Si. (eds) Materials and Measurements in Molecular Electronics. Springer Proceedings in Physics, vol 81. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68470-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68470-1_13

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68472-5

  • Online ISBN: 978-4-431-68470-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics