Skip to main content

Sputum Tests and Exhaled NO in the Diagnosis and Monitoring of Asthma

  • Chapter
Allergy Frontiers: Diagnosis and Health Economics

Part of the book series: Allergy Frontiers ((ALLERGY,volume 4))

  • 662 Accesses

Optimal control of asthma has yet to be achieved globally, as costs of care continue to mount, patient quality of life remains inadequate and mortality rates are unacceptably high. While prevalence rates are rising, asthma continues to be under-diagnosed and under-treated. Because of disease heterogeneity, it is difficult to determine the type and dose of medication that will afford patients the best risk/benefit ratio and to determine which patients will or will not develop irreversible airflow limitation. Poor patient compliance/adherence can negatively impact outcomes and must also be assessed.

While inflammation is an essential component of asthma, current practice parameters do not include its measurement in the diagnosis or management of disease. Studies employing surrogate markers of inflammation to orchestrate therapy, including induced sputum for eosinophils and methacholine sensitivity, a measure of airways hyper-reactivity, have revealed improved asthma outcomes. While these studies are less invasive than the direct assessment of inflammation with bronchial biopsy and/or evaluation of BAL washings, they are still time consuming and labor intensive and impractical for routine asthma management.

Inducible nitric oxide synthase (iNOS) is produced predominantly by airway epithelial cells and is up-regulated as part of the inflammatory process resulting in elevated levels of fractional exhaled nitric oxide (FENO) in patients with asthma. As there is a positive correlation between airway hyper-reactivity, sputum eosinophilia and FENO, this surrogate marker of eosinophilic inflammation, which is non-invasive and is quickly and easily measured, has significant potential as an “inflammometer” in the management of asthma. Despite some controversy, studies indicate that the evaluation of FENO, which is more sensitive, but correlates poorly with pulmonary function, should prove to be a valuable adjunct to current guideline recommendations.

Although further studies are needed to understand the scope and potential impact of measuring FENO, it appears to fulfill an unmet need by providing a simple, non-invasive well-tolerated, standardized and reproducible test that is a surrogate measure of eosinophilic airway inflammation in patients with asthma. When used to complement standard monitoring tools, improved asthma outcomes appear likely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Palmer RMJ, Gerrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524–526.

    Article  PubMed  CAS  Google Scholar 

  2. Furchgott RF, Zawadzki J V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373–376.

    Article  PubMed  CAS  Google Scholar 

  3. Koshland DE Jr. The molecule of the year. Science 1992;258:1861.

    Article  PubMed  Google Scholar 

  4. Bhagat K, Vallance P. Nitric oxide 9 years on. J P Soc Med 1996;89: 667–673.

    CAS  Google Scholar 

  5. Gaston B, Drazen JM, Loscalzo, et al. The biology of nitrogen oxides in the airways. Am J Respir Crit Care Med 1994;149:538.

    PubMed  CAS  Google Scholar 

  6. Ricciardolo FL, Sterk PJ, Gaston B, et al. Nitric Oxide in health and disease of the respiratory system. Physiol Rev 2004;84:731–765.

    Article  PubMed  CAS  Google Scholar 

  7. Gustafson LE, Leone AM, Persson MG, et al. Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem Biophys Res Commun 1991;181:852–857.

    Article  Google Scholar 

  8. Alving K, Weitzberg E, Lundberg JM. Increased amount of nitric oxide in exhaled air of asthmatics. Eur Respir J 1993;6:1368–1370.

    PubMed  CAS  Google Scholar 

  9. Moncada S, Higgs A. The L-arginine oxide pathway. N Engl J Med 1993;329:2002–2012.

    Article  PubMed  CAS  Google Scholar 

  10. Stuehr DJ, Griffith OW. Mammalian nitric oxide synthases. Adv Enzymol Relat Areas Mol Biol 1992;65:287–346.

    Article  PubMed  CAS  Google Scholar 

  11. Nathan C, Xie Q. Nitric oxide synthases: Roles tolls and controls. Cell 1994;78:915.

    Article  PubMed  CAS  Google Scholar 

  12. Guo FH, Comhair SA, Zheng S, et al. Molecular mechanisms of increased nitric oxide (NO) in asthma; evidence for transcriptional and post translational regulation of NO synthesis. J Immunol 2000;164:5970–5980.

    PubMed  CAS  Google Scholar 

  13. Lane C, Knight D, Burgess S, et al. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breat. Thorax 2004;59:757–760.

    Article  PubMed  CAS  Google Scholar 

  14. Nijkamp FP, Folkets G. Nitric oxide and bronchial reactivity. Clin Exp Allergy 1994;24:905–914.

    Article  PubMed  CAS  Google Scholar 

  15. Barnes PJ, Liew F Y. Nitric oxide in asthmatic inflammation. Immunol Today 1995;16:128–130.

    Article  PubMed  CAS  Google Scholar 

  16. Hansel TT, Kharitonov SA, Zheng S, et al. A selective inhibitor of inducible nitric oxide synthase inhibits exhaled breath nitric oxide in healthy volunteers and asthmatics. FASEB J 2003;17:1298–1300.

    PubMed  CAS  Google Scholar 

  17. Gao PS, Kawada H, Kasamatsu T, et al. Variants in NOS 1, NOS 2, and NOS 3 genes in asthmatics. Biochem biophys Res Commun 2000;267:761–763.

    Article  PubMed  CAS  Google Scholar 

  18. Lundberg JO, Weitzberg E, Lundberg JM, et al. Nitric oxide in exhaled air. Eur Respir J 1996;9:2671–2680.

    Article  PubMed  CAS  Google Scholar 

  19. Silkoff PE, Carlson M, Bourke T, et al. The Aerocirine exhaled nitric oxide monitoring system NIOX is cleared by the US Food and Drug Administration for monitoring therapy in asthma. J Allergy Clin Immunol 2004;114:1241–1256.

    Article  PubMed  CAS  Google Scholar 

  20. Silkoff PE, McLean PA, Slusky AS, et al. Marked flow dependence of exhaled nitric oxide using a new technique to exclude exhaled nitric oxide. Am J Respir Crit Care Med 1997;155:260–267.

    PubMed  CAS  Google Scholar 

  21. Silkoff PE, Sylvester JT, Zamel N, et al. Airway nitric oxide diffusion in asthma: role in pulmonary function and bronchial responsiveness. Am J Respir Crit Care Med 2000;161:1218–1228.

    PubMed  CAS  Google Scholar 

  22. American Thoracic Society/European Respiratory Society. ATS/ERS recommendations for standardized procedures for online and offline measurement of exhaled lower respiratory and nasal nitric oxide. 2005; Am J Resp Crit Care Med 2005;171:912–930.

    Article  Google Scholar 

  23. Kharitonov SA, Goniio, F, Delly C, et al. Reproducibility of exhaled nitric oxide measurements in healthy and asthmatics adults and children. Eur Respir J 2003;21:433–438.

    Article  PubMed  CAS  Google Scholar 

  24. Whelan GJ, Blake K, Kissoon N, et al. Effect of montelukast on time — course of exhaled nitric in asthma: influence of LTC4 synthase A(−444)C polymorphism. Pediatr Pulmonol 2003;36:413–420.

    Article  PubMed  Google Scholar 

  25. Franklin PJ, Taplin R, Stick SM. A community study of exhaled nitric oxide in healthy children. Am J Respir Crit Care Med 1999;159:69–73.

    PubMed  CAS  Google Scholar 

  26. Tsang KW, Ip SK, Leung R, et al. Exhaled nitric oxide: the effects of age, gender and body size. Lung 2001;179:83–91.

    Article  PubMed  CAS  Google Scholar 

  27. Grasemann H, Michler E, Wallot M, et al. Decreased concentration of exhaled nitric oxide (NO) in patients with cystic fibrosis. Pediatr Pulmonol 1997;24:173–177.

    Article  PubMed  CAS  Google Scholar 

  28. Karadag B, James AJ, Gultekin E, et al. Nasal and lower airway level of nitric oxide in children with primary ciliary dyskinesia. Eur Respir J 1999;13:1402–1405.

    Article  PubMed  CAS  Google Scholar 

  29. Chambers DC, Tunnicliffe WS, Ayres JG. Acute inhalation of cigarette smoke increases lower respiratory tract nitric oxide concentrations. Thorax 1998;53:677–679.

    Article  PubMed  CAS  Google Scholar 

  30. Zetterquist W, Pedroletti C, Lundberg JO, et al. Salivary contribution to exhaled nitric oxide. Eur Respir J 1999;13:327–333.

    Article  PubMed  CAS  Google Scholar 

  31. Henriksen AH, Sue-Chu M, Lingas Holmen T, et al. Exhaled and nasal NO levels in allergic rhinitis; relation to sensitization, pollen season and bronchia hyperresponsiveness. Eur Respir J 1999;13:301–306.

    Article  PubMed  CAS  Google Scholar 

  32. Henriksen AH, Holmen TL, Bjermer L. Sensitization and exposure to pet allergens in asthmatics versus non asthmatics with allergic rhinitis. Respir Med 2001;95:122–129.

    Article  PubMed  CAS  Google Scholar 

  33. Jouaville LF, Annesi-Maesano I, Nguyen LT, et al. Interrelationships among asthma, atopy, rhinitis and exhaled nitric oxide in a population-based sample of children. Clin Exp Allergy 2003;33:1506–1511.

    Article  PubMed  CAS  Google Scholar 

  34. Baraldi E, Carra S, Dario C, Azzolin N, et al. Effect of natural grass pollen exposure on exhaled nitric oxide in asthmatic children. Am J Respir Crit Care Med 1999;159:262–266.

    PubMed  CAS  Google Scholar 

  35. Khatri SB, Ozkan M, McCarthy K, et al. Alterations in exhaled gas profile during allergen induced asthmatic response. Am J Respir Crit Care Med 2001;164:1844–1888.

    PubMed  CAS  Google Scholar 

  36. Piacentini GL, Bodini A, Costella S, Vincentini L, et al. Allergen avoidance is associated with a fall in exhaled nitric oxide in asthmatic children. J Allergy Clin Immunol 1999;104:1323–1324.

    Article  PubMed  CAS  Google Scholar 

  37. de Gouw HW, Grunberg K, Schot R, et al. Relationship between exhaled nitric oxide and airway hyperresponsiveness following experimental rhinovirus infection in asthmatic subjects. Eur Respir J 1998;11:126–132.

    Article  PubMed  Google Scholar 

  38. Kharitonov SA, Yates DH, Chung KF, et al. Changes in the dose of inhaled steroid affect exhaled nitric oxide levels in asthmatic patients. Eur Respir J 1996;9:196–201.

    Article  PubMed  CAS  Google Scholar 

  39. Bratton DL, Lanz MJ, Miyazawa N, et al. Exhaled nitric oxide before and after montelukast sodium therapy in school aged children with chronic asthma: a preliminary study. Pediatr Pulmonol 1999;28:402–407.

    Article  PubMed  CAS  Google Scholar 

  40. Silkoff PE, Romero FA, Gupta N, et al. Exhaled nitric oxide in children with asthma receiving Xolair (omalizumab), a monoclonal anti-immunoglobuln E antibody. Pediatrics 2004;113:308–312.

    Article  Google Scholar 

  41. Wechsler ME, Grasemann H, Deykin A, et al. Exhlaed nitric oxide in patients with asthma: association with NOS 1 genothype. Am J Resp Crit Care Med 2000;162:2043–2047.

    PubMed  CAS  Google Scholar 

  42. Silkoff PE, Wakita S, Chatkin J, et al. Exhaled nitric oxide after beta 2-agonists on exhaled nitric oxide in asthmatic patients. Am J Resp Crit Care Med 1999;159:940–944.

    PubMed  CAS  Google Scholar 

  43. Piacentini GL, Bodini A, Costella S, et al. Exhaled nitric oxide is reduced after sputum induction in asthmatic children. Pediatr Pulmonol 2000:29:430–433.

    Article  PubMed  CAS  Google Scholar 

  44. Piacentini GL, Bodini A, Peroni DG, et al. Reduction in nitric oxide immediately after methacholine challenge in asthmatic children. Thorax 2002;57:771–773.

    Article  PubMed  CAS  Google Scholar 

  45. Wang CH, Liu CY, Lin HC, et al. Increased exhaled nitric oxide in active pulmonary tuberculosis due to inducible NO synthase upregulation in alveolar macrophages. Eur Respir J 1998;11:809–815.

    Article  PubMed  CAS  Google Scholar 

  46. Soderman C, Leone A, Furst V, et al. Endogenous nitric oxide in exhaled air from patients with liver cirrhosis. Scand J Gastroenterol 1997;32:591–597.

    Article  PubMed  CAS  Google Scholar 

  47. Liu CY, Wang CH, Chen TC, et al. Increased level of exhaled nitric oxide and up- regulation of inducible nitric oxide synthase in patients with primary lung cancer.Br J Cancer 1998; 78:534–541.

    PubMed  CAS  Google Scholar 

  48. Kharitonov SA, Wells AU, O'Connor BJ, et al. Elevated levels of exhaled nitric oxide in bronchiectasis. Am J Respir Crit Care Med 1995;151:1889–1893.

    PubMed  CAS  Google Scholar 

  49. Silkoff PE, Caramori M, Tremblay L, et al. Exhaled nitric oxide in human lung transplantation. A noninvasive marker of acute rejection. Am J Respir Crit Care Med 1998;157:1822–1828.

    PubMed  CAS  Google Scholar 

  50. Delen FM, Sippel JM, Osborne ML, et al. Increased exhaled nitric oxide in chronic bronchitis: comparison with asthma and COPD. Chest 2000;117:695–701.

    Article  PubMed  CAS  Google Scholar 

  51. Agusti AG, Villaverde JM, Togores B, et al. Serial measurements of exhaled nitric oxide during exacerbations of chronic obstructive pulmonary disease. Eur Respir J 1999;14:523–528.

    Article  PubMed  CAS  Google Scholar 

  52. National Heart Lung and Blood Institute/World Health Organization (NHLBI/WHO). Global Initiative for Asthma: Global Strategy for Asthma Management and Prevention. Workshop Report. National Institutes of Health, Bethesda, MD, 2004.

    Google Scholar 

  53. From the Global Strategy for Asthma Management and Prevention, Global Initiative for Asthma (GINA) 2006. Available from: http://www.ginasthma.org.

  54. Martinez FD. Present and future treatment of asthma in infants and young children. J Allergy Clin Immunol 1999;104:169–174.

    Article  PubMed  CAS  Google Scholar 

  55. Peat JK, Woolcock AJ, Cullen K. Rate of decline of lung function in subjects with asthma. Eur J Respir Dis 1987;70:171–179.

    PubMed  CAS  Google Scholar 

  56. Vonk JM, Jongepier H, Panhuysen CI, et al. Risk factors associated with the presence of irreversible airflow limitation and reduced transfer coefficient in patients with asthma after 26 years of follow up. Thorax 2003;58:322–327.

    Article  PubMed  CAS  Google Scholar 

  57. Davies DE, Wicks J, Powell RM, et al. Airway remodeling in asthma: new insights. J Allergy Clin Immunol 2003;111:215–225.

    Article  PubMed  CAS  Google Scholar 

  58. Vignola AM, Mirabella F, Costanzo G, et al. Airway remodeling in asthma. Chest 2003;123;S417–S422.

    Article  Google Scholar 

  59. The Childhood Asthma Management Program Research Group. Long-term effects of budeso-nide or nedocromil in children with asthma. N Engl J Med 2000; 12;343(15):1054–1063.

    Article  Google Scholar 

  60. Guilbert TW, Morgan WJ, Krawiec M, et al. The Prevention of Early Asthma in Kids study: design, rationale and methods for the Childhood Asthma Research and Education network. Control Clin Trials 2004; 25:286–310.

    Article  PubMed  Google Scholar 

  61. Murray CS, Woodcock A, Langley SJ, et al. Secondary prevention of asthma by the use of Inhaled Fluticasone propionate in Wheezy Infants (IFWIN): double- blind,randomized, controlled study. Lancet 2006;26;368:754–762.

    Article  CAS  Google Scholar 

  62. Malmstrom K, Rodriguez-Gomez G, Guerra J, et al. Oral montelukast, inhaled beclomethasone, and placebo for chronic asthma. A randomized, controlled trial. Montelukast/ Beclomethasone Study Group. Ann Intern Med 1999;16(130):487–495.

    Google Scholar 

  63. Szefler SJ, Martin RJ, King TS, et al. Significant variability in response to inhaled corticosteroids for persistent asthma. J Allergy Clin Immunol 2002;109:410–418.

    Article  PubMed  CAS  Google Scholar 

  64. Bateman ED, Boushey HA, Bousquet J, et al. Can guideline-defined asthma control be achieved? The Gaining Optimal Asthma ControL study. Am J Respir Crit Care Med 2004;15(170):836–844.

    Article  Google Scholar 

  65. Crimi E, Spanvello A, Neri M, et al. Dissociation between airway inflammation and airway hyperresponsiveness in allergic asthma. Am J Respir Crit Care Med 1998;157:4–9.

    PubMed  CAS  Google Scholar 

  66. Smith AD, Cowan JO, Filsell S, et al. Diagnosing asthma: comparisons between exhaled nitric oxide measurements and conventional tests. Am J Respir Crit Care Med 2004;169:473–478.

    Article  PubMed  Google Scholar 

  67. Zitt M. Clinical applications of exhaled nitric oxide for the diagnosis and management of asthma: a consensus report. Clin Ther 2005;27:1238–1250.

    Article  PubMed  CAS  Google Scholar 

  68. Sont JK, Willems LN, Bel EH, et al. Clinical control and histopathologic outcome of asthma when using airway hyperresponsiveness as an additional guide to long-term treatment. The AMPUL Study Group. Am J Respir Crit Care Med 1999;159:1043–1051.

    PubMed  CAS  Google Scholar 

  69. Wardlaw AJ, Brightling C, Green R, et al. Eosinophils in asthma and other allergic diseases. Br Med Bull. 2000;56:985–1003.

    Article  PubMed  CAS  Google Scholar 

  70. Jatakanon A, Lim S, Barnes PJ. Changes in sputum eosinophils predict loss of asthma control. Am J Respir Crit Care Med 2000;161:64–72.

    PubMed  CAS  Google Scholar 

  71. Pizzichini MM, Pizzichini E, Clelland L, et al. Prednisone-dependent asthma: inflammatory indices in induced sputum. Eur Respir J 1999;13:15–21.

    Article  PubMed  CAS  Google Scholar 

  72. Jatakanon A, Lim S, Kharitonov SA, et al. Correlation between exhaled nitric oxide, sputum eosi-nophils, and methacholine responsiveness in patients with mild asthma. Thorax 1998;53:91–95.

    Article  PubMed  CAS  Google Scholar 

  73. Green RH, Brightling CE, McKenna S, et al. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet 2002;360:1715–1721.

    Article  PubMed  Google Scholar 

  74. Covar RA, Spahn JD, Murphy JR, et al. Progression of asthma measured by lung function in the childhood asthma management program. Am J Respir Crit Care Med 2004;170(3):234–241.

    Article  PubMed  Google Scholar 

  75. American Thoracic Society and European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med 2005;171:912–930.

    Article  Google Scholar 

  76. Obata H, Dittrick M, Chan H, et al. Sputum eosinophils and exhaled nitric oxide during late asthmatic reaction in patients with red cedar asthma. Eur Respir J 1999;13:477–478.

    Article  Google Scholar 

  77. Berry MA et al. The use of exhaled nitric oxide concentration to identify eosinophilic airway inflammation: an observational study in adults with asthma. Clin Exp Allergy 2005;35:1175–1179.

    Article  PubMed  CAS  Google Scholar 

  78. Warke TJ, Fitch PS, Brown V, et al. Exhaled nitric oxide correlates with airway eosinophils in childhood asthma. Thorax 2002;57:383–387.

    Article  PubMed  CAS  Google Scholar 

  79. Lex C et al. Airway eosinophilia in children with severe asthma: predictive values of noninvasive tests. Am J Respir Crit Care Med 2006;174:1286–1291.

    Article  PubMed  Google Scholar 

  80. Payne DN, Adcock IM, Wilson NM, et al. Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment with oral prednisolone. Am J Respir Crit Care Med 2001;164:1376–1381.

    PubMed  CAS  Google Scholar 

  81. Van den Toorn LM, Overbeek SE, de Jongste JC, et al. Airway inflammation is present during clinical remission of atopic asthma. Am J Respir Crit Care Med 2001;164:2107–2113.

    PubMed  Google Scholar 

  82. Piacentini GL, Bodini A, Costella S, et al. Allergen avoidance is associated with a fall in exhaled nitric oxide in asthmatic children. J Allergy Clin Immunol 1999;104:1323–1324.

    Article  PubMed  CAS  Google Scholar 

  83. Ihre E, Gyllfors P, Gustafsson LE, et al. Early rise in exhaled nitric oxide and mast cell activation in repeated low dose allergen challenge. Eur Respir J 2006;27:1152–1159.

    Article  PubMed  CAS  Google Scholar 

  84. Dupont LJ, Demedts MG, Verleden GM. Prospective evaluation of the validity of exhaled nitric oxide for the diagnosis of asthma. Chest 2003;123:751–756.

    Article  PubMed  CAS  Google Scholar 

  85. Goldstein MF, Veza BA, Dunsky, et al. Comparisons of peak diurnal expiratory flow variation, post-bronchodilator FEV1 responses, and methacholine inhalation challenges on the evaluation of suspected asthma. Chest 2001;119:1001–1010.

    Article  PubMed  CAS  Google Scholar 

  86. Arora R, Thornblade CE, Dauby P, et al. Exhaled nitric oxide (eNO) as a tool for asthma screening in military recruits. J Allergy Clin Immunol 2005;115:S268.

    Article  Google Scholar 

  87. Malmberg LP et al. Exhaled nitric oxide rather than lung function distinguishes preschool children with probable asthma. Thorax 2003;58:494–499.

    Article  PubMed  CAS  Google Scholar 

  88. Deykin A, Massaro AF, Drazen JM, et al. Exhaled nitric oxide as a diagnostic test for asthma: online versus offline techniques and effect of flow rate. Am J Respir Crit Care Med 2002;165:1597–1601.

    Article  PubMed  Google Scholar 

  89. Silvestri M, Mattioli G, Defilippi AC, et al. Correlations between exhaled nitric oxide levels and pH-metry data in asthmatics with gastro-oesophageal reflux. Respiration 2004;71:329–335.

    Article  PubMed  CAS  Google Scholar 

  90. Olin AC, Alving K, Toren K, et al. Height, age, and atopy are associated with fraction of exhaled nitric oxide in a large adult general population sample. Chest 2006;130:1319–1325.

    Article  PubMed  Google Scholar 

  91. Kharitonov SA, Gaini F, Kelly C, et al. Reproducibility of exhaled nitric oxide measurements in healthy and asthmatic adults and children. Eur Respir J 2003;21:433–438.

    Article  PubMed  CAS  Google Scholar 

  92. Buchvald F, Baraldi E, Carraro S, et al. Measurements of exhaled nitric oxide in healthy subjects age 4 to 17 years. J Allergy Clin Immunol 2005;115:1130–1136.

    Article  PubMed  CAS  Google Scholar 

  93. Malmberg L P, Petays T, Haahtela, et al. Exhaled nitric oxide in healthy nonatopic school-age children: determinants and height-adjusted reference values. Pediatr Pulmonol 2006;41:635–642.

    Article  PubMed  CAS  Google Scholar 

  94. Taylor DR, Pijnenburg MW, Smith AD, De Jongste JC. Exhaled nitric oxide measurements: clinical application and interpretation. Thorax 2006;61:817–827.

    Article  PubMed  CAS  Google Scholar 

  95. Smith AD, Cowan JO, Brassett S, et al. Exhaled nitric oxide: a predictor of steroid response. Am J Resp Crit Care Med 2005;172:453–459.

    Article  PubMed  Google Scholar 

  96. Zeiger RS, Szefler SJ, Phillips BR, et al. Response profiles to fluticasone and montelukast in mild-to-moderate persistent childhood asthma. J Allergy Clin Immunol 2006;117:45–52.

    Article  PubMed  CAS  Google Scholar 

  97. Kelly MM, Leigh R, Jayaram L, et al. Eosinophilic bronchitis in asthma: a model for establishing dose-response and relative potency of inhaled corticosteroids. J Allergy Clin Immunol 2006;117:989–994.

    Article  PubMed  CAS  Google Scholar 

  98. Zietkowski Z, Bodzenta-Lukaszyk A, Tomasiak MM, et al. Effect of ciclesonide and fluticasone on exhaled nitric oxide in patients with mild allergic asthma. Respir Med 2006;100:1561–1556.

    Article  Google Scholar 

  99. Jatakanon A, Kharitonov S, Lim S, et al. Effect of differing doses of inhaled budesonide on markers of airway inflammation in patients with mild asthma. Thorax 1999;54:108–114.

    Article  PubMed  CAS  Google Scholar 

  100. Jones SL, Herbison P, Cowan JO, et al. Exhaled NO and assessment of anti-inflammatory effects of inhaled steroid: dose-response relationship. Eur Respir J 2002;20:601–608.

    Article  PubMed  CAS  Google Scholar 

  101. Zhang J, Yu C, Holgate ST, Reiss TF. Variability and lack of predictive ability of asthma and end-points in clinical trials. Eur Respir J 2002;20:1102–1109.

    Article  PubMed  CAS  Google Scholar 

  102. Boushey HA, Sorkness CA, King TS, et al. Daily versus as-needed corticosteroids for mild persistent asthma. N Eng J Med 2005;352:1519–1528.

    Article  CAS  Google Scholar 

  103. Pijnenburg MW, Hofhuis W, Hop WC, et al. Exhaled nitric oxide predicts asthma relapse in children with clinical asthma remission. Thorax 2005;60:215–218.

    Article  PubMed  CAS  Google Scholar 

  104. Jones SL, Kittelson J, Cowan JO, et al. The predictive value of exhaled nitric oxide measurements in assessing changes in asthma control. Am J Respir Crit Care Med 2001;64:738–743.

    Google Scholar 

  105. Harkins MS, Karen-Lynn F, Iwamoto GK. Exhaled nitric oxide predicts asthma exacerbation. J Asthma 2005;41:471–476.

    Article  CAS  Google Scholar 

  106. Smith AD, Cowan JO, Brassett KP, et al. Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N Eng J Med 2005;352:2163–2173.

    Article  CAS  Google Scholar 

  107. Pijnenburg MW, Bakker EM, Hop WC, et al. Titrating steroids on exhaled nitric oxide in children with asthma: a randomized controlled trial. Am J Respir Crit Care Med 2005;172:831–836.

    Article  PubMed  Google Scholar 

  108. Shaw DE, Berry MA, Thomas M, Green RH, Brightling CE, Wardlaw AJ, Pavord ID. The use of exhaled nitric oxide to guide asthma management: a randomized controlled trial. Am J Respir Crit Care Med 2007;176:231–237.

    Article  PubMed  CAS  Google Scholar 

  109. Szefler SJ, Mitchell H, Sorkness CA, Gergen PJ, O'Connor GT, Morgan WJ, Kattan M, Pongracic JA, Teach SJ, Bloomberg GR, et al. Management of asthma based on exhaled nitric oxide in addition to guideline-based treatment for inner-city adolescents and young adults: a randomised controlled trial. Lancet 2008;372:1065–1072.

    Article  PubMed  Google Scholar 

  110. de Jongste JC, Carraro S, Hop WC, CHARISM Study Group, Baraldi, E. Daily telemonitor-ing of exhaled nitric oxide and symptoms in the treatment of childhood asthma. Am J Respir Crit Care Med 2009;179:93–97.

    Article  Google Scholar 

  111. Taylor DR. Exhaled NO: Forward, Backward, or Sideways? Am J Respir Crit Care Med 2007;176:221–223.

    Article  PubMed  CAS  Google Scholar 

  112. Taylor DR. Exhaled nitric oxide still alive, not laid to rest. Am J Respir Crit Care Med 2009;179:88–89.

    Article  PubMed  Google Scholar 

  113. Petsky HL, Cates CJ, Li A, Kynaston JA, Turner C, Chang AB. Tailored interventions based on exhaled nitric oxide versus clinical symptoms for asthma in children and adults (Review). The Cochrane Collaboration. Cochrane Database Sys Rev, 2009;2:CD006340.

    Google Scholar 

  114. Weinstein AG. Should patients with persistent severe asthma be monitored for medication adherence? Ann Allergy Asthma Immunol 2005;94:251–257.

    Article  PubMed  Google Scholar 

  115. Yeung M, O'Connor SA, Parry DT, et al. Compliance with prescribed drug therapy in asthma. Respir Med 1994;88:31–35.

    Article  PubMed  CAS  Google Scholar 

  116. Onyirimba F, Apter A, Reisine S, et al. Direct clinician-to-patient feedback discussion of inhaled steroid use: its effect on adherence. Ann Allergy Asthma Immunol 2003;90:411–415.

    Article  PubMed  Google Scholar 

  117. Weinstein AG, McKee L, Stapleford J, et al. An economic evaluation of short-term inpatient rehabilitation for children with severe asthma. J Allergy Clin Immunol 1996;98:264–273.

    Article  PubMed  CAS  Google Scholar 

  118. Delgado-Corcoran C, Kissoon N, Murphy SP, et al. Exhaled nitric oxide reflects asthma severity and asthma control. Pediatr Crit Care Med 2004;5:48–52.

    Article  PubMed  Google Scholar 

  119. Beck-Ripp J, Griese M, Arenz S, et al. Changes of exhaled nitric oxide during steroid treatment of childhood asthma. Eur Respir J 2002;19:1015–1019.

    Article  PubMed  CAS  Google Scholar 

  120. Martin RJ. Therapeutic significance of distal airway inflammation in asthma. J Allergy Clin Immunol 2002, 109:S447–S460.

    Article  PubMed  Google Scholar 

  121. Hamid Q, Song Y, Kotsimbos TC, et al. Inflammation of small airways in asthma. J Allergy Clin Immunol 1997;100:44–51

    Article  PubMed  CAS  Google Scholar 

  122. Kraft M. The distal airways: are they important in asthma? Eur Respir J 1999;14:1403–1417.

    Article  PubMed  CAS  Google Scholar 

  123. Kraft M, Djukanovic R, Wilson S, et al. Alveolar tissue inflammation in asthma. Am J Respir Crit Care Med 1996;154:1505–1510.

    PubMed  CAS  Google Scholar 

  124. Yanai M, Sekizawa K, Ohrui T, Sasaki H, Takishima T. Site of airway obstruction in pulmonary disease: direct measurement of intrabronchial pressure. J Appl Physiol 1992;72:1016–1023.

    PubMed  CAS  Google Scholar 

  125. Carroll N, Elliot J, Morton A, et al. The structure of large and small airways in nonfatal and fatal asthma. Am Rev Respir Dis 1993;147:405–410.

    PubMed  CAS  Google Scholar 

  126. Carroll NG, Cooke C, James AL. The distribution of eosinophils and lymphocytes in the large and small airways of asthmatics. Eur Respir J 1997;10:292–300.

    Article  PubMed  CAS  Google Scholar 

  127. Wagner EM, Bleecker ER, Permutt S, Liu MC. Direct assessment of small airways reactivity in human subjects.Am J Respir Crit Care Med 1998;157:447–452.

    PubMed  CAS  Google Scholar 

  128. Zitt MJ. Advances in inhaled corticosteroid pharmacology. Allergy Asthma Proc 2007;28:114–124.

    Article  PubMed  CAS  Google Scholar 

  129. Tsoukias NM, George SC. A two-compartment model of pulmonary nitric oxide exchange dynamics. J Appl Physiol 1998;85:653–666.

    PubMed  CAS  Google Scholar 

  130. Lehtimaki L, Kankaanranta H, Saarelainen S, et al. Increased alveolar nitric oxide concentration in asthmatic patients with nocturnal symptoms. Eur Respir J 2002;20:841–845.

    Article  PubMed  CAS  Google Scholar 

  131. Malmberg LP. Exhlaed nitric oxide in childhood asthma — Time to use inflammometry rather than spirometry? J Asthma 2004;41:511–520.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Zitt, M. (2009). Sputum Tests and Exhaled NO in the Diagnosis and Monitoring of Asthma. In: Pawankar, R., Holgate, S.T., Rosenwasser, L.J. (eds) Allergy Frontiers: Diagnosis and Health Economics. Allergy Frontiers, vol 4. Springer, Tokyo. https://doi.org/10.1007/978-4-431-98349-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-98349-1_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-98293-7

  • Online ISBN: 978-4-431-98349-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics