Skip to main content

Melatonin and Melatonergic Drugs for Therapeutic Use in Breast Cancer

  • Chapter
  • First Online:
Melatonin and Melatonergic Drugs in Clinical Practice

Abstract

Melatonin-estradiol interactions at the cellular level explain the effects of melatonin on breast carcinogenesis. The objective of this chapter is to review the mechanisms supporting the usefulness of melatonin in breast cancer therapy, particularly its properties of selective estrogen receptor modulator (SERM) and selective estrogen enzyme modulator (SEEM), since these properties are probably the best explanation of its oncostatic effects on hormone-dependent breast cancer. Currently, perhaps the most widespread idea about the usefulness of melatonin in the management of breast cancer is that it could be considered as a complement to conventional treatments. Thus, as an adjuvant of SERMs, melatonin could enhance their antiestrogenic actions, whereas in association with SEEMs, melatonin could reduce the osteoporosis induced by these drugs, potentiate their effects, and add its own antiaromatase actions. Melatonin could be used for the relief of some of the symptoms frequently associated with the cancerous process or of those arising during cancer treatment (depression, anxiety, sleep disturbances, cognitive dysfunction, etc.). As an adjuvant to chemotherapy treatments (anthracyclines, taxanes, platinum drugs, etc.), melatonin protects against or mitigates the side effects of these drugs and, in some cases, potentiates their oncostatic effects. Administered in conjunction with radiotherapy, melatonin acts as an antioxidant radioprotector. Furthermore, melatonin may prevent breast cancer caused by chronodisruption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mediavilla MD, Sanchez-Barcelo EJ, Tan DX, Manchester L, Reiter RJ. Basic mechanisms involved in the anti-cancer effects of melatonin. Curr Med Chem. 2010;17:4462–81.

    Article  CAS  PubMed  Google Scholar 

  2. Sanchez-Barcelo EJ, Mediavilla MD, Alonso-Gonzalez C, Reiter RJ. Melatonin uses in oncology: breast cancer prevention and reduction of the side effects of chemotherapy and radiation. Expert Opin Investig Drugs. 2012;21:819–31.

    Article  CAS  PubMed  Google Scholar 

  3. CohenCohen M, Lippman M, Chabner B. Role of pineal gland in aetiology and treatment of breast cancer. Lancet. 1978;2:814–6.

    Article  Google Scholar 

  4. Sánchez-Barceló EJ, Cos S, Mediavilla D, Martínez-Campa C, González A, Alonso-González C. Melatonin-estrogen interactions in breast cancer. J Pineal Res. 2005;38:217–22.

    Article  PubMed  Google Scholar 

  5. Schernhammer ES, Giobbie-Hurder A, Gantman K, Savoie J, Scheib R, Parker LM, et al. A randomized controlled trial of oral melatonin supplementation and breast cancer biomarkers. Cancer Causes Control. 2012;23:609–16.

    Article  CAS  PubMed  Google Scholar 

  6. Cos S, Fernández R, Güézmes A, Sánchez-Barceló EJ. Influence of melatonin on invasive and metastatic properties of MCF-7 human breast cancer cells. Cancer Res. 1998;58:4383–90.

    CAS  PubMed  Google Scholar 

  7. Mao L, Yuan L, Slakey LM, Jones FE, Burow ME, Hill SM. Inhibition of breast cancer cell invasion by melatonin is mediated through regulation of the p38 mitogen-activated protein kinase signaling pathway. Breast Cancer Res. 2010;12(6):R107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Wilson ST, Blask DE, Lemus-Wilson AM. Melatonin augments the sensitivity of MCF-7 human breast cancer cells to tamoxifen in vitro. J Clin Endocrinol Metab. 1992;75:669–70.

    CAS  PubMed  Google Scholar 

  9. Cucina A, Proietti S, D’Anselmi F, Coluccia P, Dinicola S, Frati L, et al. Evidence for a biphasic apoptotic pathway induced by melatonin in MCF-7 breast cancer cells. J Pineal Res. 2009;46:172–80.

    Article  CAS  PubMed  Google Scholar 

  10. Mediavilla MD, Güezmez A, Ramos S, Kothari L, Garijo F, Sánchez Barceló EJ. Effects of melatonin on mammary gland lesions in transgenic mice overexpressing N-ras proto-oncogene. J Pineal Res. 1997;22:86–94.

    Article  CAS  PubMed  Google Scholar 

  11. Mediavilla MD, Cos S, Sánchez-Barceló EJ. Melatonin increases p53 and p21WAF1 expression in MCF-7 human breast cancer cells in vitro. Life Sci. 1999;65:415–20.

    Article  CAS  PubMed  Google Scholar 

  12. Molis TM, Spriggs LL, Jupiter Y, Hill SM. Melatonin modulation of estrogen-regulated proteins, growth factors, and proto-oncogenes in human breast cancer. J Pineal Res. 1995;18:93–103.

    Article  CAS  PubMed  Google Scholar 

  13. Ram PT, Kiefer T, Silverman M, Song Y, Brown GM, Hill SM. Estrogen receptor transactivation in MCF-7 breast cancer cells by melatonin and growth factors. Mol Cell Endocrinol. 1998;141:53–64.

    Article  CAS  PubMed  Google Scholar 

  14. Molis TM, Walters MR, Hill SM. Melatonin modulation of estrogen receptor expression in MCF-7 human breast cancer cells. Int J Oncol. 1993;3:687–94.

    CAS  PubMed  Google Scholar 

  15. Molis TM, Spriggs LL, Hill SM. Modulation of estrogen receptor mRNA expression by melatonin in MCF-7 human breast cancer cells. Mol Endocrinol. 1994;8:1681–90.

    CAS  PubMed  Google Scholar 

  16. Rato AG, Pedrero JG, Martinez MA, del Rio B, Lazo PS, Ramos S. Melatonin blocks the activation of estrogen receptor for DNA binding. FASEB J. 1999;13:857–68.

    CAS  PubMed  Google Scholar 

  17. Kiefer T, Ram PT, Yuan L, Hill SM. Melatonin inhibits estrogen receptor transactivation and cAMP levels in breast cancer cells. Breast Cancer Res Treat. 2002;71:37–45.

    Article  CAS  PubMed  Google Scholar 

  18. Baldwin WS, Barrett JC. Melatonin: receptor-mediated events that may affect breast and other steroid hormone-dependent cancers. Mol Carcinog. 1998;21:149–55.

    Article  CAS  PubMed  Google Scholar 

  19. Jones MP, Melan MA, Witt-Enderby PA. Melatonin decreases cell proliferation and transformation in a melatonin receptor-dependent manner. Cancer Lett. 2000;151:133–43.

    Article  CAS  PubMed  Google Scholar 

  20. Ram PT, Day J, Yuan L, Dong C, Kiefer TL, Lai L, et al. Involvement of the mt1 melatonin receptor in human breast cancer. Cancer Lett. 2002;179:141–50.

    Article  CAS  PubMed  Google Scholar 

  21. Lai L, Yuan L, Chen Q, Dong C, Mao L, Rowan B, et al. The Galphai and Galphaq proteins mediate the effects of melatonin on steroid/thyroid hormone receptor transcriptional activity and breast cancer cell proliferation. J Pineal Res. 2008;45:476–88.

    Article  CAS  PubMed  Google Scholar 

  22. Collins A, Yuan L, Kiefer TL, Cheng Q, Lai L, Hill SM. Overexpression of the MT1 melatonin receptor in MCF-7 human breast cancer cells inhibits mammary tumor formation in nude mice. Cancer Lett. 2003;189:49–57.

    Article  CAS  PubMed  Google Scholar 

  23. Yuan L, Collins AR, Dai J, Dubocovich ML, Hill SM. MT(1) melatonin receptor overexpression enhances the growth suppressive effect of melatonin in human breast cancer cells. Mol Cell Endocrinol. 2002;192:147–56.

    Article  CAS  PubMed  Google Scholar 

  24. Dillon DC, Easley SE, Asch BB, Cheney RT, Brydon L, Jockers R, et al. Differential expression of high-affinity melatonin receptors (MT1) in normal and malignant human breast tissue. Am J Clin Pathol. 2002;118:451–8.

    Article  CAS  PubMed  Google Scholar 

  25. Lai L, Yuan L, Cheng Q, Dong C, Mao L, Hill SM. Alteration of the MT1 melatonin receptor gene and its expression in primary human breast tumors and breast cancer cell lines. Breast Cancer Res Treat. 2009;118:293–305.

    Article  CAS  PubMed  Google Scholar 

  26. Aronica SM, Kraus WL, Katzenellenbogen BS. Estrogen action via the cAMP signaling pathway: stimulation of adenylate cyclase and cAMP-regulated gene transcription. Proc Natl Acad Sci U S A. 1994;91:8517–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cardinali DP, Bonanni Rey RA, Mediavilla MD, Sánchez-Barceló E. Diurnal changes in cyclic nucleotide response to pineal indoles in murine mammary glands. J Pineal Res. 1992;13:111–6.

    Article  CAS  PubMed  Google Scholar 

  28. Godson C, Reppert SM. The Mel1a melatonin receptor is coupled to parallel signal transduction pathways. Endocrinology. 1997;138:397–404.

    CAS  PubMed  Google Scholar 

  29. Benítez-King G, Ríos A, Martínez A, Antón-Tay F. In vitro inhibition of Ca2+/calmodulin-dependent kinase II activity by melatonin. Biochim Biophys Acta. 1996;1290:191–6.

    Article  PubMed  Google Scholar 

  30. Dai J, Inscho EW, Yuan L, Hill SM. Modulation of intracellular calcium and calmodulin by melatonin in MCF-7 human breast cancer cells. J Pineal Res. 2002;32:112–9.

    Article  CAS  PubMed  Google Scholar 

  31. Bouhoute A, Leclercq G. Modulation of estradiol and DNA binding to estrogen receptor upon association with calmodulin. Biochem Biophys Res Commun. 1995;208:748–55.

    Article  CAS  PubMed  Google Scholar 

  32. Castoria G, Migliaccio N, Nola E, Auricchio F. In vitro interaction of estradiol receptor with Ca2+ calmodulin. Mol Endocrinol. 1988;2:167–74.

    Article  CAS  PubMed  Google Scholar 

  33. García Pedrero JM, Del Rio B, Martínez-Campa C, Muramatsu M, Lazo PS, Ramos S. Calmodulin is a selective modulator of estrogen receptors. Mol Endocrinol. 2002;16:947–60.

    PubMed  Google Scholar 

  34. Li L, Sacks DB. Functional interactions between calmodulin and estrogen receptor-alpha. Cell Signal. 2007;19:439–43.

    Article  CAS  PubMed  Google Scholar 

  35. del Río B, García Pedrero JM, Martínez-Campa C, Zuazua P, Lazo PS, Ramos S. Melatonin, an endogenous-specific inhibitor of estrogen receptor alpha via calmodulin. J Biol Chem. 2004;279:38294–302.

    Article  PubMed  Google Scholar 

  36. Kiefer TL, Lai L, Yuan L, Dong C, Burow ME, Hill SM. Differential regulation of estrogen receptor alpha, glucocorticoid receptor and retinoic acid receptor alpha transcriptional activity by melatonin is mediated via different G proteins. J Pineal Res. 2005;38:231–9.

    Article  CAS  PubMed  Google Scholar 

  37. Dong C, Yuan L, Dai J, Lai L, Mao L, Xiang S, et al. Melatonin inhibits mitogenic cross-talk between retinoic acid-related orphan receptor alpha (RORalpha) and ERalpha in MCF-7 human breast cancer cells. Steroids. 2010;75:944–51.

    Article  CAS  PubMed  Google Scholar 

  38. van Landeghem AA, Poortman J, Nabuurs M, Thijssen JH. Endogenous concentration and subcellular distribution of estrogens in normal and malignant human breast tissue. Cancer Res. 1985;45:2900–6.

    PubMed  Google Scholar 

  39. Pasqualini JR. The selective estrogen enzyme modulators in breast cancer: a review. Biochim Biophys Acta. 2004;1654:123–43.

    CAS  PubMed  Google Scholar 

  40. Suzuki T, Miki Y, Nakamura Y, Moriya T, Ito K, Ohuchi N, et al. Sex steroid-producing enzymes in human breast cancer. Endocr Relat Cancer. 2005;12:701–20.

    Article  CAS  PubMed  Google Scholar 

  41. Cos S, Martínez-Campa C, Mediavilla MD, Sánchez-Barceló EJ. Melatonin modulates aromatase activity in MCF-7 human breast cancer cells. J Pineal Res. 2005;38:136–42.

    Article  CAS  PubMed  Google Scholar 

  42. Cos S, González A, Güezmes A, Mediavilla MD, Martínez-Campa C, Alonso-González C, et al. Melatonin inhibits the growth of DMBA-induced mammary tumors by decreasing the local biosynthesis of estrogens through the modulation of aromatase activity. Int J Cancer. 2006;118:274–8.

    Article  CAS  PubMed  Google Scholar 

  43. Cos S, González A, Martínez-Campa C, Mediavilla MD, Alonso-González C, Sánchez-Barceló EJ. Melatonin as a selective estrogen enzyme modulator. Curr Cancer Drug Targets. 2008;8:691–702.

    Article  CAS  PubMed  Google Scholar 

  44. González A, Martínez-Campa C, Mediavilla MD, Alonso-González C, Sánchez-Mateos S, Hill SM, et al. Effects of MT1 melatonin receptor overexpression on the aromatase-suppressive effect of melatonin in MCF-7 human breast cancer cells. Oncol Rep. 2007;17:947–53.

    PubMed  Google Scholar 

  45. González A, Alvarez-García V, Martínez-Campa C, Mediavilla MD, Alonso-González C, Sánchez-Barceló EJ, et al. In vivo inhibition of the estrogen sulfatase enzyme and growth of DMBA-induced mammary tumors by melatonin. Curr Cancer Drug Targets. 2010;10:279–86.

    Article  PubMed  Google Scholar 

  46. Martínez-Campa C, González A, Mediavilla MD, Alonso-González C, Alvarez-García V, Sánchez-Barceló EJ, et al. Melatonin inhibits aromatase promoter expression by regulating cyclooxygenases expression and activity in breast cancer cells. Br J Cancer. 2009;101:1613–9.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Gonzalez A, Cos S, Martinez-Campa C, Alonso-Gonzalez C, Sanchez-Mateos S, Mediavilla MD, Sanchez-Barcelo EJ. Selective estrogen enzyme modulator actions of melatonin in human breast cancer cells. J Pineal Res. 2008;45:86–92.

    Article  CAS  PubMed  Google Scholar 

  48. Sanchez-Barcelo EJ, Mediavilla MD, Alonso-Gonzalez C, Rueda N. Breast cancer therapy based on melatonin. Recent Pat Endocr Metab Immune Drug Discov. 2012;6:108–16.

    Article  CAS  PubMed  Google Scholar 

  49. Cos S, Blask DE, Lemus-Wilson A, Hill AB. Effects of melatonin on the cell cycle kinetics and “estrogen-rescue” of MCF-7 human breast cancer cells in culture. J Pineal Res. 1991;10:36–42.

    Article  CAS  PubMed  Google Scholar 

  50. Cini G, Neri B, Pacini A, Cesati V, Sassoli C, Quattrone S, et al. Antiproliferative activity of melatonin by transcriptional inhibition of cyclin D1 expression: a molecular basis for melatonin-induced oncostatic effects. J Pineal Res. 2005;39:12–20.

    Article  CAS  PubMed  Google Scholar 

  51. Jou MJ, Peng TI, Yu PZ, Jou SB, Reiter RJ, Chen JY, et al. Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis. J Pineal Res. 2007;43:389–403.

    Article  CAS  PubMed  Google Scholar 

  52. Sanchez-Hidalgo M, Guerrero JM, Villegas I, Packham G, de la Lastra CA. Melatonin, a natural programmed cell death inducer in cancer. Curr Med Chem. 2012;19:3805–21.

    Article  CAS  PubMed  Google Scholar 

  53. Cos S, Mediavilla MD, Fernández R, González-Lamuño D, Sánchez-Barceló EJ. Does melatonin induce apoptosis in MCF-7 human breast cancer cells in vitro? J Pineal Res. 2002;32:90–6.

    Article  CAS  PubMed  Google Scholar 

  54. Moon IK, Jarstfer MB. The human telomere and its relationship to human disease, therapy, and tissue engineering. Front Biosci. 2007;12:4595–620.

    Article  CAS  PubMed  Google Scholar 

  55. Kyo S, Takakura M, Kanaya T, Zhuo W, Fujimoto K, Nishio Y, et al. Estrogen activates telomerase. Cancer Res. 1999;59:5917–21.

    CAS  PubMed  Google Scholar 

  56. Leon-Blanco MM, Guerrero JM, Reiter RJ, Calvo JR, Pozo D. Melatonin inhibits telomerase activity in the MCF-7 tumor cell line both in vivo and in vitro. J Pineal Res. 2003;35:204–11.

    Article  CAS  PubMed  Google Scholar 

  57. Martínez-Campa CM, Alonso-González C, Mediavilla MD, Cos S, González A, Sanchez-Barcelo EJ. Melatonin down-regulates hTERT expression induced by either natural estrogens (17beta-estradiol) or metalloestrogens (cadmium) in MCF-7 human breast cancer cells. Cancer Lett. 2008;268:272–7.

    Article  PubMed  Google Scholar 

  58. Klaunig JE, Wang Z, Pu X, Zhou S. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol. 2011;254:86–99.

    Article  CAS  PubMed  Google Scholar 

  59. Cavalieri E, Frenkel K, Liehr JG, Rogan E, Roy D. Estrogens as endogenous genotoxic agents – DNA adducts and mutations. J Natl Cancer Inst Monogr. 2000;27:75–93.

    Article  CAS  PubMed  Google Scholar 

  60. Galano A, Tan DX, Reiter RJ. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res. 2011;51:1–16.

    Article  CAS  PubMed  Google Scholar 

  61. Rodriguez C, Mayo JC, Sainz RM, Antolín I, Herrera F, Martín V, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36:1–9.

    Article  CAS  PubMed  Google Scholar 

  62. Karbownik M, Lewinski A, Reiter RJ. Anticarcinogenic actions of melatonin which involve antioxidative processes: comparison with other antioxidants. Int J Biochem Cell Biol. 2001;33:735–53.

    Article  CAS  PubMed  Google Scholar 

  63. Salven P, Mänpää H, Orpana A, Alitalo K, Joensuu H. Serum vascular endothelial growth factor is often elevated in disseminated cancer. Clin Cancer Res. 1997;3:647–51.

    CAS  PubMed  Google Scholar 

  64. Lissoni P, Barni S, Meregalli S, Fossati V, Cazzaniga M, Esposti D, Tancini G. Modulation of cancer endocrine therapy by melatonin: a phase II study of tamoxifen plus melatonin in metastatic breast cancer patients progressing under tamoxifen alone. Br J Cancer. 1995;71:854–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Alvarez-García V, González A, Alonso-González C, Martínez-Campa C, Cos S. Regulation of vascular endothelial growth factor by melatonin in human breast cancer cells. J Pineal Res. 2012. doi:10.1111/jpi.12007. Epub ahead of print.

    Google Scholar 

  66. Cui P, Luo Z, Zhang H, Su Y, Li A, Li H, et al. Effect and mechanism of melatonin’s action on the proliferation of human umbilical vein endothelial cells. J Pineal Res. 2006;41:358–62.

    Article  CAS  PubMed  Google Scholar 

  67. Dai M, Cui P, Yu M, Han J, Li H, Xiu R. Melatonin modulates the expression of VEGF and HIF-1 alpha induced by CoCl2 in cultured cancer cells. J Pineal Res. 2008;44:121–6.

    Article  CAS  PubMed  Google Scholar 

  68. Filipski E, Lévi F. Circadian disruption in experimental cancer processes. Integr Cancer Ther. 2009;8:298–302.

    Article  CAS  PubMed  Google Scholar 

  69. Blask DE, Brainard GC, Dauchy RT, Hanifin JP, Davidson LK, Krause JA, et al. Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res. 2005;65:11174–84.

    Article  CAS  PubMed  Google Scholar 

  70. Cos S, Mediavilla D, Martínez-Campa C, González A, Alonso-González C, Sánchez-Barceló EJ. Exposure to light-at-night increases the growth of DMBA-induced mammary adenocarcinomas in rats. Cancer Lett. 2006;235:266–71.

    Article  CAS  PubMed  Google Scholar 

  71. Hill SM, Frasch T, Xiang S, Yuan L, Duplessis T, Mao L. Molecular mechanisms of melatonin anticancer effects. Integr Cancer Ther. 2009;8:337–46.

    Article  CAS  PubMed  Google Scholar 

  72. Carrillo-Vico A, Calvo JR, Abreu P, Lardone PJ, García-Mauriño S, Reiter RJ, et al. Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. FASEB J. 2004;18:537–9.

    CAS  PubMed  Google Scholar 

  73. Lee SE, Kim SJ, Yoon HJ, Yu SY, Yang H, Jeong SI, et al. Genome-wide profiling in melatonin-exposed human breast cancer cell lines identifies differentially methylated genes involved in the anticancer effect of melatonin. J Pineal Res. 2012. doi:10.1111/j.1600-079X.2012.01027.x. Epub ahead of print.

    Google Scholar 

  74. Mills E, Wu P, Seely D, Guyatt G. Melatonin in the treatment of cancer: a systematic review of randomized controlled trials and meta-analysis. J Pineal Res. 2005;39:360–6.

    Article  CAS  PubMed  Google Scholar 

  75. Panzer A, Viljoen M. The validity of melatonin as an oncostatic agent. J Pineal Res. 1997;22:184–202.

    Article  CAS  PubMed  Google Scholar 

  76. Sanchez-Barcelo EJ, Mediavilla MD, Tan DX, Reiter RJ. Clinical uses of melatonin: evaluation of human trials. Curr Med Chem. 2010;17:2070–95.

    Article  CAS  PubMed  Google Scholar 

  77. West KE, Jablonski MR, Warfield B, Cecil KS, James M, Ayers MA, et al. Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans. J Appl Physiol. 2011;110:619–26.

    Article  PubMed  Google Scholar 

  78. Hansen MV, Madsen MT, Hageman I, Rasmussen LS, Bokmand S, Rosenberg J, et al. The effect of MELatOnin on depression, anxietY, cognitive function and sleep disturbances in patients with breast cancer. The MELODY trial: protocol for a randomised, placebo-controlled, double-blinded trial. BMJ Open. 2012;2:e000647. doi:10.1136/bmjopen-2011-000647.

    PubMed Central  PubMed  Google Scholar 

  79. Hara M, Yoshida M, Nishijima H, Yokosuka M, Iigo M, Ohtani-Kaneko R, et al. Melatonin, a pineal secretory product with antioxidant properties, protects against cisplatin-induced nephrotoxicity in rats. J Pineal Res. 2001;30:129–38.

    Article  CAS  PubMed  Google Scholar 

  80. Nahleh Z, Pruemer J, Lafollette J, Sweany S. Melatonin, a promising role in taxane-related neuropathy. Clin Med Insights Oncol. 2010;4:35–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Block KI, Koch AC, Mead MN, Tothy PK, Newman RA, Gyllenhaal C. Impact of antioxidant supplementation on chemotherapeutic toxicity: a systematic review of the evidence from randomized controlled trials. Int J Cancer. 2008;123:1227–39.

    Article  CAS  PubMed  Google Scholar 

  82. Shirazi A, Ghobadi G, Ghazi-Khansari M. A radiobiological review on melatonin: a novel radioprotector. J Radiat Res. 2007;48:263–72.

    Article  CAS  PubMed  Google Scholar 

  83. Shirazi A, Mihandoost E, Mohseni M, Ghazi-Khansari M, Rabie Mahdavi S. Radio-protective effects of melatonin against irradiation-induced oxidative damage in rat peripheral blood. Phys Med. 2013;29:65–74.

    Article  PubMed  Google Scholar 

  84. Vasin MV, Ushakov IB, Kovtun VY, Komarova SN, Semenova LA. Effect of melatonin, ascorbic acid, and succinic acid on the cumulative toxic effect of repeated treatment with gammafos (amifostine). Bull Exp Biol Med. 2004;137:450–2.

    Article  CAS  PubMed  Google Scholar 

  85. Sanchez-Barcelo EJ, Martinez-Campa CM, Mediavilla MD, Gonzalez A, Alonso-Gonzalez C, Cos S. Melatonin and melatoninergic drugs as therapeutic agents: Ramelteon and Agomelatine, the two most promising melatonin receptor agonists. Recent Pat Endocr Metab Immune Drug Discov. 2007;1:142–51.

    Article  CAS  Google Scholar 

  86. Mao L, Cheng Q, Guardiola-Lemaître B, Schuster-Klein C, Dong C, Lai L, et al. In vitro and in vivo antitumor activity of melatonin receptor agonists. J Pineal Res. 2010;49:210–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio J. Sanchez-Barcelo PhD, MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Sanchez-Barcelo, E.J., Aguado, M.D.M., Corral, S.C. (2014). Melatonin and Melatonergic Drugs for Therapeutic Use in Breast Cancer. In: Srinivasan, V., Brzezinski, A., Oter, S., Shillcutt, S. (eds) Melatonin and Melatonergic Drugs in Clinical Practice. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0825-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0825-9_11

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-0824-2

  • Online ISBN: 978-81-322-0825-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics