Skip to main content

Alleviation of Salt Stress in Legumes by Co-inoculation with Pseudomonas and Rhizobium

  • Chapter
  • First Online:
Plant Microbe Symbiosis: Fundamentals and Advances

Abstract

Numerous studies have shown that soil salinity decreases nodulation and dramatically reduces N2 fixation and nitrogenase activity of nodulated legumes. Thus, the development of salt-tolerant symbioses is an absolute necessity to enable cultivation of leguminous crops in salt-affected soils. Dual inoculation of legumes with plant growth-promoting rhizobacteria (PGPR) and rhizobia has been reported to increase the number of nodules compared to those formed by a rhizobial strain alone. The production of IAA by Pseudomonas strains represents a beneficial mechanism that promoted enlargement of root system and thereby further enhanced nutrient uptake, nodulation, and shoot growth of leguminous plants. When PGPR are able to alleviate salt stress experienced by the plant, more nodules might develop into nitrogen-fixing ones, thereby enabling the plant to obtain part of its nitrogen from the atmosphere. Co-inoculation techniques could be a new approach to increase the salt tolerance and yield of legumes used for the food and green manure production in salt-affected soils, providing supply of biologically fixed N at low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal I, Basra S, Iqbal A (2005) The effect of seed soaking with plant growth regulators on seedling vigor of wheat under salinity stress. J Stress Physiol Biochem 1:6–14

    Google Scholar 

  • Akhtar MS, Siddiqui ZA (2009) Use of plant growth-promoting rhizobacteria for the biocontrol of root-rot disease complex of chickpea. Aust Plant Pathol 38:44–50

    Article  Google Scholar 

  • Ardakani S, Heydari A, Tayebi L, Mohammadi M (2010) Promotion of cotton seedlings growth characteristics by development and use of new bioformulations. Int J Bot 6(2):95–100

    Article  Google Scholar 

  • Arora NK, Khare E, Oh JH, Kang SC, Maheshwari DK (2008) Diverse mechanisms adopted by fluorescent Pseudomonas PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World J Microbiol Biotechnol 24:581–585

    Article  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with plant growth promoting rhizobacteria containing ACC-deaminase partially eliminates the effects of water stress on growth, yield and ripening of Pisum sativum L. Pedosphere 18:611–620

    Article  Google Scholar 

  • Ashraf M, McNeilly T (2004) Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci 23:157–174

    Article  CAS  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2009) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109:8–14

    Article  Google Scholar 

  • Barriuso J, Pereyra MT, Lucas García JA, Megías M, Gutierrez Mañero FJ, Ramos B (2005) Screening for putative PGPR to improve establishment of the symbiosis Lactarius deliciosus-pinus sp. Microb Ecol 50(1):82–89

    Article  PubMed  CAS  Google Scholar 

  • Beltra R, Diaz F, Fraile G (1980) The formation of growth substances by Rhizobium species. Z Bakteriol Parasitenkd Infektionskr Hyg Abt 135:617–622

    CAS  Google Scholar 

  • Bolton HJ, Elliott LF, Turco RF, Kennedy AC (1990) Rhizoplane colonisation of pea seedlings by Rhizobium leguminosarum and a deleterious root colonising Pseudomonas sp. and its effect on plant growth. Plant Soil 123:121–124

    Google Scholar 

  • Bouhmouch I, Souad-Mouhsine B, Brhada F, Aurag J (2005) Influence of host cultivars and Rhizobium species on the growth and symbiotic performance of Phaseolus vulgaris under salt stress. J Plant Physiol 162:1103–1113

    Article  PubMed  CAS  Google Scholar 

  • Burdman S, Kigel J, Okon Y (1997) Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biol Biochem 29:923–929

    Article  CAS  Google Scholar 

  • Burdman S, Okon Y, Jurkevitch E (2000) Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Crit Rev Microbiol 26:91–110

    Article  PubMed  CAS  Google Scholar 

  • Cakmakci R, Donmez D, Aydın A, Sahin F (2005) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487

    Article  Google Scholar 

  • Carter JM, Gardner WK, Gibson AH (1994) Improved growth and yield of faba beans (Vicia faba cv. fiord) by inoculation with strains of Rhizobium leguminosarum biovar. viciae in acid soils in south-west Victoria. Aust J Agric Res 94:613–623

    Article  Google Scholar 

  • Cordovilla MP, Ocana A, Ligero F, Lluch C (1995) Salinity effects on growth analysis and nutrient composition in four grain legumes-Rhizobium symbiosis. J Plant Nutr 18:1595–1609

    Article  CAS  Google Scholar 

  • Cordovilla MD, Ligero F, Lluch C (1999) Effect of salinity on growth, nodulation and nitrogen assimilation in nodules of faba bean (Vicia faba L.). Appl Soil Ecol 11:1–7

    Article  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant associated bacteria. Crit Rev Microbiol 21:1–18

    Article  PubMed  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  • Dashti N, Zhang F, Hynes R, Smith DL (1998) Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean (Glycine max (L. Merr.) under short season conditions. Plant Soil 200:205–213

    Article  CAS  Google Scholar 

  • Delgado MJ, Ligero F, Lluch C (1994) Effects of salt stress on growth and nitrogen fixation by pea, faba-bean, common bean and soybean plants. Soil Biol Biochem 26:371–376

    Article  CAS  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159(4):371–394

    Article  PubMed  CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    Article  CAS  Google Scholar 

  • Egamberdieva D (2011) Survival of Pseudomonas extremorientalis TSAU20 and P. chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant Soil Environ 57(3):122–127

    Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:563–571

    Article  Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Chebotar V, Tikhonovich I, Kamilova F, Validov S, Lugtenberg B (2010) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soil 47:197–205

    Article  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013) Alleviation of salt stress of symbiotic Galega officinalis L. (Goat’s Rue) by co-inoculation of Rhizobium with root colonising Pseudomonas. Plant Soil doi: 10.1007/s11104-013-1586-3

  • Egamberdiyeva D, Hoflich G (2002) Root colonization and growth promotion of winter wheat and pea by Cellulomonas spp. at different temperatures. J Plant Growth Regul 38:219–224

    Article  CAS  Google Scholar 

  • Egamberdiyeva D, Islam KR (2008) Salt tolerant rhizobacteria: Plant growth promoting traits and physiological characterization within ecologically stressed environment. In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley-VCH Verlag GmbH & Co., Weinheim, pp 257–281

    Chapter  Google Scholar 

  • Egamberdiyeva D, Qarshieva D, Davranov K (2004) The use of Bradyrhizobium japonicum to enhance growth and yield of soybean varieties in Uzbekistan conditions. J Plant Growth Regul 23:54–57

    Article  CAS  Google Scholar 

  • Egamberdiyeva D, Gafurova L, Islam KR (2007) Salinity effects on irrigated soil chemical and biological properties in the Syr Darya basin of Uzbekistan. In: Lal R, Sulaimanov M, Stewart B, Hansen D, Doraiswamy P (eds) Climate change and terrestrial c sequestration in Central Asia. Taylor-Francis, New York, pp 147–162

    Chapter  Google Scholar 

  • Elsheikh EAE, Elzidany AA (1997) Effects of Rhizobium inoculation, organic and chemical fertilizers on yield and physical properties of bean seeds. Plant Foods Human Nutr 51:137–144

    Article  CAS  Google Scholar 

  • Elsheikh EAE, Wood M (1995) Nodulation and N2 fixation by soybean inoculated with salt-tolerant Rhizobia or salt-sensitive Bradyrhizobia in saline soil. Soil Biol Biochem 27(4/5):657–661

    Article  CAS  Google Scholar 

  • FAO (2005) Salt-affected soils from sea water intrusion: strategies for rehabilitation and management. Report of the regional workshop, Bangkok, 62p

    Google Scholar 

  • Frankenberger JWT, Arshad M (1995) Microbial synthesis of auxins. In: Frankenberger WT, Arshad M (eds) Phytohormones in soils. Marcel Dekker Inc, New York, pp 35–71

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Liu C, Ghosh S, Dumbrof EB (1997) Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol Biochem 29:1233–1239

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li JA (1998) Model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Goel AK, Sindhu SS, Dadarwal KR (2002) Stimulation of nodulation and plant growth of chickpea (Cicer arietinum) by Pseudomonas spp. antagonistic to fungal pathogens. Biol Fertil Soil 36:391–396

    Article  CAS  Google Scholar 

  • Gruodien J, Zvironaite V (1971) Effect of IAA on growth and synthesis of N compounds in Lucerne. Luk TSR Aukstuja Mosklo Darbai Biologia 17:77–87

    Google Scholar 

  • Gulash M, Ames P, Larosiliere RC, Bergman K (1984) Rhizobia are attracted to localized sites on legume roots. Appl Environ Micobiol 48:149–152

    CAS  Google Scholar 

  • Han H, Lee S (2005) Physiological responses of soybean - inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res J Agric Biol Sci 1(3):216–221

    Google Scholar 

  • Hashem FM, Swelim DM, Kuykendall LD, Mohamed AI, Abdel-Wahab SM, Hegazi NI (1998) Identification and characterization of salt and thermo-tolerant Leucaena nodulating Rhizobium strains. Biol Fertil Soil 27:335–341

    Article  CAS  Google Scholar 

  • Hasnain S, Sabri AN (1996) Growth stimulation of Triticum aestivum seedlings under Cr-stress by nonrhizospheric Pseudomonas strains. In: Abstract Book of 7th international symposium on nitrogen fixation with non-legumes, Faisalabad, 1996, 36p

    Google Scholar 

  • Heidari M, Mousavinik SM, Golpayegani A (2011) Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ociumum basilicm L.) under water stress. ARPN J Agric Biol Sci 6(5):6–11

    Google Scholar 

  • Hontzeas N, Richardson AO, Belimov A, Safronova V, Abu-Omar MM, Glick BR (2005) Evidence for horizontal transfer of 1-aminocyclopropane-1-carboxylate deaminase genes. Appl Environ Microbiol 71:7556–7558

    Article  PubMed  CAS  Google Scholar 

  • Hunter WJ (1989) Indole-3-acetic acid production by bacteroids from soybean root nodules. Physiol Plant 76:31–36

    Article  CAS  Google Scholar 

  • Jackson M (1997) Hormones from roots as signals for the shoots of stressed plants. Elsevier Trends J 2:22–28

    Google Scholar 

  • Joseph B, Patra RR, Lawrence R (2007) Characterization of plant growth promoting Rhizobacteria associated with chickpea (Cicer arietinum L). Int J Plant Prod 1:141–152

    Google Scholar 

  • Kang SM, Joo GJ, Hamayun M, Na CI, Shin DH, Kim YK, Hong JK, Lee IJ (2009) Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett 31:277–281

    Article  PubMed  CAS  Google Scholar 

  • Khosravi H, Yakhchali B, Alikhani HA (2010) Potential evaluation of some native Rhizobia as plant growth promoting bacteria and their role on decreasing of stress ethylene. Iran J Biol 22(4):661–671

    Google Scholar 

  • Khurana AS, Sharma P (2000) Effect of dual inoculation of phosphate solubilizing bacteria, Bradyrhizobium sp. and phosphorus on nitrogen fixation and yield of chickpea. Indian J Pulses Res 13:66–67

    Google Scholar 

  • Klassen SP, Bugbee B (2002) Sensitivity of wheat and rice to low levels of atmospheric ethylene. Crop Sci 42:746–753

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  PubMed  CAS  Google Scholar 

  • Ma JH, Yao JL, Cohen D, Morris B (1998) Ethylene inhibitors enhance in vitro root formation from apple shoot cultures. Plant Cell Rep 17:211–214

    Article  CAS  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  PubMed  CAS  Google Scholar 

  • Marcar NE, Dart P, Sweeney C (1991) Effect of root zone salinity on growth and chemical composition of Acacia ampliceps BR, Maslin A., auriculiformis A. Cunn ex Benth, and A. mangium Wild, at two nitrogen levels. New Phytol 119:567–573

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51:326–335

    Article  PubMed  Google Scholar 

  • Mensah JK, Ihenyen J (2009) Effect of salinity on germination, seedling establishment and yield of three genotypes of mung bean (Vigna Mungo L. Hepper) in Edo State, Nigeria. Niger Ann Nat Sci 8(2):17–24

    Google Scholar 

  • Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht JK, Gupta HS (2009) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42:305–313

    Article  PubMed  CAS  Google Scholar 

  • Mishra RK, Prakash O, Alam M, Dikshit A (2010) Influence of plant growth promoting rhizobacteria (PGPR) on the productivity of Pelargonium Graveolens l. herit. Recent Res Sci Technol 2(5):53–57

    CAS  Google Scholar 

  • Parmar N, Dadarwall KR (1999) Stimulation of nitrogen fixation and induction of flavonoid like compounds by rhizobacteria. J Appl Microbiol 86:36–44

    Article  CAS  Google Scholar 

  • Plazinski J, Rolfe BG (1985) Azospirillum-Rhizobium interaction leading to plant growth stimulation without nodule formation. Can J Microbiol 31:1026–1030

    Article  CAS  Google Scholar 

  • Räsänen LA, Saijets S, Jokinen K, Lindström K (2003) Evaluation of the roles of two compatible solutes, glycine betaine and trehalose, for the Acacia senegalSinorhizobium symbiosis exposed to drought stress. Plant Soil 260:237–251

    Article  Google Scholar 

  • Ratti N, Kumar S, Verma HN, Gautams SP (2001) Improvement in bioavailability of tricalcium phosphate to Cymbopogon martini var. motia by rhizobacteria, AMF and azospirillum inoculation. Microbiol Res 156:145–149

    Article  PubMed  CAS  Google Scholar 

  • Rekha PD, Lai WA, Arun AB, Young CC (2007) Effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic condition. Bioresour Technol 98:447–451

    Article  PubMed  CAS  Google Scholar 

  • Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Gutierrez RT, El-Howeitym M, Michiels J, Vanderleyden J (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161

    Article  CAS  Google Scholar 

  • Rogers ME, Craig AD, Munns R, Colmer TD, Nichols PGH, Malcolm CV, Barrett-Lennard EG, Brown AJ, Semple WS, Evans PM, Cowley K, Hughes SJ, Snowball R, Bennett SJ, Sweeney GC, Dear BS, Ewing MA (2005) The potential for developing fodder plants for the salt-affected areas of southern and eastern Australia: an overview. Aust J Exp Agric 45:301–329

    Article  Google Scholar 

  • Rokhzadi A, Asgharzadeh A, Darvish F, Nour-Muhammadi G, Majidi E (2008) Influence of plant growth promoting rhizobacteria on dry matter accumulation and yield of chickpea (Cicer arietinum L.) under field conditions. Am Eur J Agric Environ Sci 3(2):253–257

    Google Scholar 

  • Rosas SB, Andres JA, Rovera M, Correa N (2006) Phosphate-solubilizing Pseudomonas putida can influence the rhizobia-legume symbiosis. Soil Biol Biochem 38:3502–3505

    Article  CAS  Google Scholar 

  • Serraj RH, Vasquez- Diaz G, Hernandez DJJ (2001) Genotypic difference in response of nitrogenase activity (C2H2 reduction) to salinity and oxygen in common bean. Agronomie 21:645–650

    Article  Google Scholar 

  • Shahab S, Nuzhat A, Nasreen SK (2009) Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. Afr J Agric Res 4:1312–1316

    Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42(2):155–159

    Article  PubMed  CAS  Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:75–120

    Article  Google Scholar 

  • Shirokova Y, Forkutsa I, Sharafutdinova N (2000) Use of electrical conductivity instead of soluble salts for soil salinity monitoring in Central Asia. Irrig Drain Syst 14:199–205

    Article  Google Scholar 

  • Siddiqui ZA, Iqbal A, Mahmood I (2001) Effects of Pseudomonas fluorescens and fertilizers on the reproduction of Meloidogyne incognita and growth of tomato. Appl Soil Ecol 16:179–185

    Article  Google Scholar 

  • Sindhu SS, Dadarwal KR (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol Res 156:353–358

    Article  PubMed  CAS  Google Scholar 

  • Singleton PW, Bohlool B (1984) Effect of salinity on the nodule formation by soybean. Plant Physiol 74:72–76

    Article  PubMed  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth-promoting actions of rhizobacteria. In: van Loon LC, Ed Kader JC, Delseny M (eds) Adv Bot Res 51:283–320

    Google Scholar 

  • Srinivasan PS, Gopal KS (1977) Effect of plantofix and NAA formulation on groundnut var TMU-7. Curr Sci 46:119–120

    CAS  Google Scholar 

  • Subbarao GV, Johansen C, Jana MK, Rao DKK (1990) Comparative salinity tolerance of symbiotically dependent at nitrogen fed pigeon pea (Cajanus cajan) and its wild relative Atylosia platycarpa. Biol Fertil Soil 10:11–16

    Google Scholar 

  • Tanimoto E (2005) Regulation of root growth by plant hormones: roles for auxin and gibberellin. Crit Rev Plant Sci 24:249–265

    Article  CAS  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeon pea (Cajanus cajan). Eur J Soil Sci 57(1):67–71

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Klimova S, Shestakov AI, Botina SG, Netrusov AI (2007) Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Arch Microbiol 188:655–664

    Article  PubMed  CAS  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth promoting rhizobacteria under salinity condition. Pedosphere 2:214–222

    Article  Google Scholar 

  • Valverde A, Velazquez E, Santos FF, Vizcaino N, Rivas R, Mateos PF, Molina EM, Igual JM, Willems A (2005) Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989

    Article  PubMed  CAS  Google Scholar 

  • Van Hoorn JW, Katerji N, Hamdy A, Mastororilli M (2001) Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agric Water Manage 51:87–98

    Article  Google Scholar 

  • Velagaleti RR, Marsh S (1989) Influence of host cultivars and Bradyrhizobium strains on the growth and symbiotic performance of soybean under salt stress. Plant Soil 119:133–138

    Article  Google Scholar 

  • Vincent B, Marlet S, Vidal A, Bouarfa S, Wu J, Yang J, N’Diaye MK, Kuper M, Zimmer D (2006) Water and soil salinity management and salt redistribution in irrigation systems. In: Combating global soil and land degradation IV. Salinization, sodification and other forms of degradation in agricultural and native ecosystems. Proceedings 18th world congress of soil science, Philadelphia, 2006

    Google Scholar 

  • Walsh KB (1995) Physiology of the legume nodule and its response to stress. Soil Biol Biochem 27:637–655

    Article  CAS  Google Scholar 

  • Wang TL, Wood EA, Brewin NJ (1982) Growth regulators, Rhizobium and nodulation in peas. Indole-3-acetic acid from the culture medium of nodulating and non-nodulating strains of R. leguminosarum. Planta 155:343–349

    Google Scholar 

  • Wheeler CT, Henson IE, Mc Laughlin ME (1979) Hormones in plants bearing actinomycete nodules. Bot Gaz 140:52–57

    Article  CAS  Google Scholar 

  • Williams MNV, Singer ER (1990) Metabolism of tryptophan and tryptophan analogs by Rhizobium meliloti. Plant Physiol 92:1009–1013

    Article  PubMed  CAS  Google Scholar 

  • Yadegari M, Rahmani A (2010) Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting Rhizobacteria (PGPR) on yield and yield components. Afr J Agric Res 5:792–799

    Google Scholar 

  • Yasmin F, Othman R, Saad MS, Sijam K (2007) Screening for beneficial properties of Rhizobacteria isolated from sweet potato rhizosphere. J Biotechnol 6:49–52

    Article  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    PubMed  CAS  Google Scholar 

  • Zahran HH, Abu-Gharbia MA (1995) Development and structure of bacterial root-nodules of two Egyptian cultivars of Vicia faba L. under salt and water stresses. Bull Fac Sci Assiut Univ 24:1–10

    Google Scholar 

  • Zahran HH, Sprent JI (1986) Effects of sodium chloride and polyethylene glycol on root-hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta 167:303–309

    Article  CAS  Google Scholar 

  • Zholkevich VN, Pustovoytova TN (1993) The role of Cucumis sativum L. leaves and content of phytohormones under soil drought. Russ J Plant Physiol 40:676–680

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilfuza Egamberdieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Egamberdieva, D., Jabborova, D., Wirth, S. (2013). Alleviation of Salt Stress in Legumes by Co-inoculation with Pseudomonas and Rhizobium . In: Arora, N. (eds) Plant Microbe Symbiosis: Fundamentals and Advances. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1287-4_11

Download citation

Publish with us

Policies and ethics