Skip to main content

Rhizospheric Plant-Microbe Interactions: Key Factors to Soil Fertility and Plant Nutrition

  • Chapter
  • First Online:
Plant Microbes Symbiosis: Applied Facets

Abstract

Plant roots radiate a wide range of potentially valuable small molecular weight compounds into the rhizosphere which play a key role in the chemical, physical, and biological interaction between roots of the plants and the rhizosphere. The microorganisms present in the rhizosphere react with the numerous metabolites released by plant roots by positive, negative, and neutral ways, and these interactions may influence the plant growth and development, change nutrient dynamics, and also alter the plants susceptibility towards diseases and abiotic stresses. The root produces chemical signals that attract the bacteria and other microbes towards it. Beside this, positive interactions also include growth regulator mimics that support the plant growth and the cross-species signaling with other rhizospheric microorganisms. Plant-microbe interactions can influence the plant growth by providing nutrients and increased biotic and abiotic stress tolerance. Most of the agricultural soils have large amounts of inorganic and organic phosphorus (P), but it is present in immobilized form so is usually unavailable to plants. One of the major reasons why P is not readily available to plants is because of the high reactivity of P with some metal complexes. In this regard, the soil inoculants such as fungi, plant growth-promoting rhizobacteria (PGPR), and mycorrhizal fungi play a significant role in the solubilization of inorganic phosphate and mineralization of organic phosphates into easily available form to plants. Similarly, nitrogen (N) fixers provide available N to the plants. N is a key limiting factor in any ecosystem. For treating heavy metal-contaminated tailings and soils, bioremediation is one of the cost-effective methods and is emerging as the potential tool for removal of these contaminants from the soil or water. Bioremediation is a versatile process that could be applied in situ or ex situ manner. A wide variety of microorganisms such as bacteria, fungi, yeasts, and algae are being used in bioremediation processes, and some of these have already been employed as biosorbents of heavy metals. Various technologies such as phytoremediation, bioventing, bioleaching, land farming, bioreactor, composting, bioaugmentation, rhizofiltration, and biostimulation are nowadays used for the bioremediation of contaminants from the soil. The aim of this chapter is to focus on the plant-microbe interactions responsible for the maintenance of soil fertility, plant nutrition, and also the remediation of contaminated soil for sustainable agricultural system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    PubMed  CAS  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    PubMed  CAS  Google Scholar 

  • Agrawal SK (2005) Advanced environmental biotechnology. APH Publishing Corporation, Darya Ganj, New Delhi

    Google Scholar 

  • Akhtar MS (2011) In: Akhtar MS (ed) Biocontrol of root-rot disease complex of chickpea by arbuscular mycorrhizal fungi and other phosphate solubilizing microorganisms. LAMBERT Academic Publishing GmbH and Co. KG, Dudweiler Landstrasse

    Google Scholar 

  • Akhtar MS, Panwar J (2011) Arbuscular mycorrhizal fungi and opportunistic fungi: efficient root symbionts for the management of plant parasitic nematodes. Adv Sci Eng Med 3:165–175

    Google Scholar 

  • Akhtar MS, Siddiqui ZA (2006) Effects of phosphate solubilizing microorganisms on the growth and root-rot disease complex of chickpea. Mycol Phytopathol 40:246–254

    CAS  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008a) Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 61–98

    Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008b) Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas straita. Crop Prot 27:410–417

    Google Scholar 

  • Akhtar MS, Siddiqui ZA (2009) Use of plant growth promoting rhizobacteria for the biocontrol of root-rot disease complex of chickpea. Australas Plant Pathol 38:44–50.

    Google Scholar 

  • Akhtar MS, Siddiqui ZA (2010) Role of plant growth promoting rhizobacteria in biocontrol of plant diseases and sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Microbiology monographs 18. Springer, Berlin, pp 157–196

    Google Scholar 

  • Akhtar MS, Siddiqui ZA, Wiemken A (2011) Arbuscular mycorrhizal fungi and Rhizobium to control plant fungal diseases. In: Lichtfouse E (ed) Alternative farming systems, biotechnology, drought stress and ecological fertilisation. Sustainable agriculture reviews 6. Springer, Dordrecht, pp 263–292

    Google Scholar 

  • Akhtar MS, Chali B, Azam T (2013) Bioremediation of arsenic and lead by plants and microbes from contaminated soil. Res Plant Sci 1:68–73

    Google Scholar 

  • Ames RN, Reid CPP, Porterf LK, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol 95:381–396

    Google Scholar 

  • Amijee F, Tinker PB, Stribley DP (1989) The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization. New Phytol 111:435–446

    Google Scholar 

  • Amir HG, Shamsuddin ZH, Halimi MS, Marziah M, Ramlan MF (2005) Enhancement in nutrient accumulation and growth of oil palm seedlings caused by PGPR under field nursery conditions. Commun Soil Sci Plant Anal 36:2059–2066

    CAS  Google Scholar 

  • Aseri GK, Jain N, Panwar J, Rao AV, Meghwal PR (2008) Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar Desert. Sci Hortic 117:130–135.

    Google Scholar 

  • Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    PubMed  Google Scholar 

  • Banerjee MR, Yesmin L, Vessey JK (2006) Plant growth-promoting rhizobacteria as biofertilizers and biopesticide. In: Rai MK (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 137–181

    Google Scholar 

  • Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground food webs: how plant responses to foliar herbivory influences soil organisms. Soil Biol Biochem 30:1867–1978

    CAS  Google Scholar 

  • Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcon-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304–2307

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can J Microbiol 50:521–577

    Google Scholar 

  • Beerling DJ, Berner RA (2005) Feedbacks and the coevolution of plants and atmospheric CO2. Proc Natl Acad Sci U S A 102:1302–1305

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bianciotto V, Bonfante P (2002) Arbuscular mycorrhizal fungi: a specialized niche for rhizospheric and endocellular bacteria. Antonie Van Leeuwenhoek 81:365–371

    PubMed  CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    CAS  Google Scholar 

  • Bonfante P (2003) Plants, mycorrhizal fungi, and endobacteria: a dialog among cells and genomes. Biol Bull 204:215–220

    PubMed  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    CAS  Google Scholar 

  • Brazil GM, Kenefick L, Callanan M, Haro A, de Lorenzo V, Dowling DN, O’Gara F (1995) Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 61:1946–1952

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brennan MA, Shelley ML (1999) A model of the up takes translocation and accumulation of lead (Pb) by maize for the purpose of phytoextraction. Ecol Eng 12:271–297

    Google Scholar 

  • Briones AM Jr, Okabe S, Umemiya Y, Ramsing NB, Reichardt W, Okuyama H (2003) Ammonia-oxidizing bacteria on root biofilms and their possible contribution to N use efficiency of different rice cultivars. Plant Soil 250:335–348

    CAS  Google Scholar 

  • Cankar K, Kraigher H, Ravnikar M, Rupnik M (2005) Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karts). FEMS Microbiol Lett 244:341–345

    PubMed  CAS  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta S, Joner E (2005) Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res Int 12:34–48

    PubMed  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Google Scholar 

  • Dalton DA, Kramer S, Azios N, Fusaro S, Cahill E, Kennedy C (2004) Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol Ecol 49:469–479

    PubMed  CAS  Google Scholar 

  • de Zamaroczy M, Delorme F, Elmerich C (1989) Regulation of transcription and promoter mapping of the structural genes for nitrogenase (nifHDK) of Azospirillum brasilense Sp7. Mol Gen Genet 220:88–94

    PubMed  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2005) Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol 52:153–162

    PubMed  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Anguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Response of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Eapen S, Suseelan KN, Tivarekar S, Kotwal SA, Mitra R (2003) Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environ Res 91:127–133

    PubMed  CAS  Google Scholar 

  • Egamberdiyeva D, Höflich G (2004) Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan. J Arid Environ 56:293–301

    Google Scholar 

  • Egener T, Hurek T, Reinhold-Hurek B (1999) Endophytic expression of nif genes of Azoarcus sp. strain BH72 in rice roots. Mol Plant-Microbe Interact 12:813–819

    CAS  Google Scholar 

  • Elsheikh EAE, Elzidany AA (1997) Effects of Rhizobium inoculation, organic and chemical fertilizers on yield and physical properties of faba bean seeds. Plant Foods Hum Nutr 51:137–144

    PubMed  CAS  Google Scholar 

  • Evanko CR, Dzombak DA (1997) Remediation of metals-contaminated soil and groundwater. Environ Sci 412:1–45

    Google Scholar 

  • Fantroussi S, Verschuere L, Verstraete W, Top EM (1999) Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl Environ Microbiol 65:982–988

    PubMed  PubMed Central  Google Scholar 

  • Frink CR, Waggoner PE, Ausubel JH (1999) Nitrogen fertilizer: retrospect and prospect. Proc Natl Acad Sci U S A 96:1175–1180

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    CAS  Google Scholar 

  • Germaine K, Keogh E, Garcia-Cabellos G, Borremans B, van der Lelie D, Barac T, Oeyen L, Vangronsveld J, Moore FP, Moore ERB, Campbel CD, Ryan D, Dowling DN (2004) Colonization of poplar trees by gfp expressing endophytes. FEMS Microbiol Ecol 48:109–118

    PubMed  CAS  Google Scholar 

  • Gharu A, Tarafadar JC (2004) Influence of organic acids on mobilization of inorganic and organic phosphorus in soil. J Indian Soc Soil Sci 52:248–253

    CAS  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    PubMed  Google Scholar 

  • Giri B, Giang PH, Kumari RAP, Oelmuller R, Varma A (2005) Mycorrhizosphere: strategies and function. In: Buscot F, Varma A (eds) Microorganisms in soil: roles in genesis and function. Soil biology, vol 3. Springer, Berlin

    Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    PubMed  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    PubMed  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007a) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, Mc Conkey B (2007b) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    CAS  Google Scholar 

  • Gupta G, Panwar J, Akhtar MS, Jha PN (2012) Endophytic Nitrogen-fixing bacteria as biofertilizer. In: Lichtfouse E (ed) Sustainable agriculture reviews 11. Springer, Dordrecht, pp 183–221

    Google Scholar 

  • Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    CAS  Google Scholar 

  • Hallberg KB, Johnson DB (2005) Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine. Sci Total Environ 338:53–66

    PubMed  CAS  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability, and growth of egg plant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

    PubMed  CAS  Google Scholar 

  • Hernandez MI, Chailloux M (2004) Las micorrizas arbusculares y las bacterias rizosfericas como alternativa a la nutricion mineral del tomate. Cultivos Tropicales 25:5–12

    Google Scholar 

  • Hiltner L (1904) Uber neue erfahrungen und probleme auf dem gebiete der bodenbakteriologie. Arbeiten der DLG 98:59–78

    Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    PubMed  CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    PubMed  CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147

    CAS  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    PubMed  CAS  PubMed Central  Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth promoting effect. Microbiology 148:2097–2109

    PubMed  CAS  Google Scholar 

  • Igual JM, Valverde A, Cervantes E, Velazquez E (2001) Phosphate solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their studies. Agronomie 21:561–568

    Google Scholar 

  • January MC, Cutright TJ, Van Keulen H, Wei R (2008) Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyper accumulate multiple heavy metals. Chemosphere 70:531–537

    PubMed  CAS  Google Scholar 

  • Jetten MSM (2008) The microbial nitrogen cycle. Environ Microbiol 10:2903–2909

    PubMed  CAS  Google Scholar 

  • Jing Y, He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kao PH, Huang CC, Hseu ZY (2006) Response of microbial activities to heavy metals in a neutral loamy soil treated with biosolid. Chemosphere 64:63–70

    PubMed  CAS  Google Scholar 

  • Kavamura NV, Esposito E (2008) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61–69

    Google Scholar 

  • Kennedy IR, Pereg-Gerk LL, Wood C, Deaker R, Gilchrist K, Katupitiya S (1997) Biological nitrogen fixation in non-leguminous field crops: facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil 194:65–79

    CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    PubMed  CAS  Google Scholar 

  • Khan AG (2006) Mycorrhizoremediation-an enhanced form of phytoremediation. J Zhejiang Univ Sci B 7:503–514

    PubMed  PubMed Central  Google Scholar 

  • Kitts CL, Cunningham DP, Unkefer PJ (1994) Isolation of three hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil. Appl Environ Microbiol 60:4608–4611

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    PubMed  CAS  Google Scholar 

  • Knaebel DB, Federle TW, Mc Avoy DC, Vestal JR (1994) Effect of mineral and organic soil constituents on microbial mineralization of organic compounds in a natural soil. Appl Environ Microbiol 60:4500–4508

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldan A (2008) Plant growth promoting rhizobacteria and arbuscular mycorrhizae fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    CAS  Google Scholar 

  • Koide RT (1991) Tansley review No. 29: nutrient supply, nutrient demand, and plant response to mycorrhizal infection. New Phytol 117:365–386

    CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15

    PubMed  CAS  Google Scholar 

  • Kunito T, Saeki K, Oyaizu K, Mutsumoto S (2001) Characterization of copper resistant bacterial communities in copper contaminated soils. Eur J Soil Biol 37:95–102

    CAS  Google Scholar 

  • Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–669

    PubMed  CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    PubMed  CAS  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Pollut 139:1–8

    PubMed  CAS  Google Scholar 

  • Leyval C, Binet P (1998) Effect of polyaromatic hydrocarbons in soil on arbuscular mycorrhizal plants. J Environ Qual 27:402–407

    CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    CAS  Google Scholar 

  • Liao JP, Lin XG, Cao ZH, Shi YQ, Wong MH (2003) Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere 50:847–853

    PubMed  CAS  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    CAS  Google Scholar 

  • Liu Y, Zhu YG, Chen BD, Christie P, Li XL (2005) Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza 15:187–192

    PubMed  CAS  Google Scholar 

  • Lodewyckx C, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2002) Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria. Int J Phytoremed 4:101–115

    CAS  Google Scholar 

  • Lone MI, He Z, Stoffella PJ, Yang X (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9:210–220

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mahaffee WF, Kloepper JW, Van Vuurde JWL, Van der Wolf JM, Van den Brink M (1997) Endophytic colonization of Phaseolus vulgaris by Pseudomonas fluorescens strain 89B-27 and Enterobacter asburiae strain JM22. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity in rhizosphere bacteria. CSIRO, Melbourne

    Google Scholar 

  • Mahmood S, Finlay RD, Erland S, Wallander H (2001) Solubilisation and colonisation of wood ash by ectomycorrhizal fungi isolated from a wood ash fertilized spruce forest. FEMS Microbiol Ecol 35:151–161

    PubMed  CAS  Google Scholar 

  • Malinowski DP, Zuo H, Belesky DP, Alloush GA (2004) Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. endophytes. Plant Soil 267:1–12

    CAS  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    PubMed  CAS  Google Scholar 

  • Marilley L, Aragno M (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl Soil Ecol 13:127–136

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, van der Lelie D (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 23:175–207

    PubMed  CAS  Google Scholar 

  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremed 11:251–267

    CAS  Google Scholar 

  • Meharg AA, Cairney JWG (2000) Ectomycorrhizas- extending the capabilities of rhizosphere remediation. Soil Biol Biochem 32:1475–1484

    CAS  Google Scholar 

  • Minder AC, Narberhaus F, Hans-Martin F, Hennecke H (1998) The Bradyrhizobium japonicum phoB gene is required for phosphate limited growth but not for symbiotic nitrogen fixation. FEMS Microbiol Lett 161:47–52

    PubMed  CAS  Google Scholar 

  • Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67:725–732

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J, van der Lelie D, Campbell CD, Moore ERB (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterization of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556

    PubMed  CAS  Google Scholar 

  • Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant–microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739

    PubMed  CAS  Google Scholar 

  • Mukerji KG, Mandeep A, Varma A (1998) Mycorrhizosphere microorganisms: screening and evolution. In: Varma A (ed) Mycorrhizal manual. Springer, Berlin, pp 85–97

    Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    PubMed  CAS  PubMed Central  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    PubMed  CAS  Google Scholar 

  • Nozawa-Inoue M, Scow KM, Rolston DE (2005) Reduction of perchlorate and nitrate by microbial communities in vadose soil. Appl Environ Microbiol 71:3928–3934

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ogunseitan O (2005) Microbial diversity: form and function in prokaryotes. Blackwell Science Ltd., Malden, p 142

    Google Scholar 

  • Ohno T, Griffin TS, Liebman M, Porter GA (2005) Chemical characterization of soil phosphorus and organic matter in different cropping systems in Maine, USA. Agric Ecosyst Environ 105:625–634

    CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    CAS  Google Scholar 

  • Pan MJ, Rademan S, Kuner K, Hastings JW (1997) Ultra structural studies on the colonization of banana tissue and Fusarium oxysporum f. sp. cubense race 4 by the endophytic bacterium Burkholderia cepacia. J Phytopathol 145:479–486

    Google Scholar 

  • Paquin DG, Campbell S, Li QX (2004) Phytoremediation in subtropical Hawaii-a review of over 100 plant species. Remed J 14:127–139.

    Google Scholar 

  • Pate JS, Verboom WH (2009) Contemporary biogenic formation of clay pavements by eucalypts: further support for the phytotarium concept. Ann Bot 103:673–685

    PubMed  PubMed Central  Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-Barrueco C, Martinez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    CAS  Google Scholar 

  • Perrott KW, Sarathchandra SU, Dow BW (1992) Seasonal and fertilizer effects on the organic cycle and microbial biomass in a hill country soil under pasture. Aust J Soil Res 30:383–394

    CAS  Google Scholar 

  • Phillips DA, Ferris H, Cook DR, Strong DR (2003) Molecular control points in rhizosphere food webs. Ecology 84:816–826

    Google Scholar 

  • Quadt-Hallmann A, Kloepper JW, Benhamou N (1997) Bacterial endophytes in cotton: mechanisms entering the plant. Can J Microbiol 43:577–582

    CAS  Google Scholar 

  • Raaijmakers JM, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63:881–887

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    PubMed  CAS  Google Scholar 

  • Raskin I, Ensley D (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech Adv 17:319–339

    CAS  Google Scholar 

  • Rodriguez H, Rossolini GM, Gonzalez T, Li J, Glick BR (2000) Isolation of a gene from Burkholderia cepacia IS-16 encoding a protein that facilitates phosphatase activity. Curr Microbiol 40:362–366

    PubMed  CAS  Google Scholar 

  • Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg D, Lovley DR (1999) Microbial communities associated with anaerobic benzene degradation in a petroleum contaminated aquifer. Appl Environ Microbiol 65:3056–3063

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ruiz-Lozano JM, Bonfante P (1999) Identification of putative P transporter operon in the genome of a Burkholderia strain living inside the arbuscular mycorrhizal fungus Gigaspora margarita. J Bacteriol 181:4106–4109

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saleh S, Huang XD, Greenberg BM, Glick BR (2004) Phytoremediation of persistent organic contaminants in the environment. In: Singh A, Ward O (eds) Soil biology: applied bioremediation and phytoremediation. Springer, Berlin, pp 115–134

    Google Scholar 

  • Sarand I, Timonen S, Nurmiaho-Lassila EL, Koivila T, Haahtela K, Romantschuk M (1998) Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pseudomonads in Scots pine ectomycorrhizospheres developed on petroleum contaminated soil. FEMS Microbiol Ecol 27:115–126

    CAS  Google Scholar 

  • Sarand I, Timonen S, Koivula T, Peltola R, Haahtela K, Sen R, Romantschuk M (1999) Tolerance and biodegradation of m-toluate by Scots pine, a mycorrhizal fungus and fluorescent pseudomonads individually and under associative conditions. J Appl Microbiol 86:817–826

    PubMed  CAS  Google Scholar 

  • Shah K, Nongkynrih JM (2007) Metal hyperaccumulation and bioremediation. Biol Plant 51:618–634

    CAS  Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155

    PubMed  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    PubMed  CAS  Google Scholar 

  • Sheoran V, Sheoran AS, Poonam P (2008) Remediation techniques for contaminated soils. Environ Eng Manag J 7:379–387

    CAS  Google Scholar 

  • Siciliano SD, Germida JJ (1998) Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ Rev 6:65–79

    CAS  Google Scholar 

  • Siddiqui ZA, Baghel G, Akhtar MS (2007) Biocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting rhizobacteria on lentil. World J Microbiol Biotechnol 23:435–441

    CAS  Google Scholar 

  • Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61:405–412

    PubMed  CAS  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    PubMed  CAS  PubMed Central  Google Scholar 

  • Steinshamn H, Thuen E, Bleken MA, Brenoe UT, Ekerholt G, Yri C (2004) Utilization of nitrogen (N) and phosphorus (P) in an organic dairy farming system in Norway. Agric Ecosyst Environ 104:509–522

    CAS  Google Scholar 

  • Stewart LI, Hamel C, Hogue R, Moutoglis P (2005) Response of strawberry to inoculation with arbuscular mycorrhizal fungi under very high soil phosphorus conditions. Mycorrhiza 15:612–619

    PubMed  CAS  Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tarafdar JC, Marschner H (1994a) Efficiency of VAM hyphal in utilization of organic phosphorus by wheat plants. Soil Sci Plant Nutr 40:593–600

    CAS  Google Scholar 

  • Tarafdar JC, Marschner H (1994b) Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorous. Soil Biol Biochem 26:387–395

    CAS  Google Scholar 

  • Tawaraya K, Naito M, Wagatsuma T (2006) Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi. J Plant Nutr 29:657–665

    CAS  Google Scholar 

  • Tilman D (1998) The greening of the green revolution. Nature 396:211–212

    CAS  Google Scholar 

  • Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyper accumulating fern Pteris vittata L. Chemosphere 65:74–81

    PubMed  CAS  Google Scholar 

  • Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995) Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177:1414–1417

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ukiwe LN, Egereonu UU, Njoku PC, Nwoko CIA, Allinor JI (2013) Polycyclic aromatic hydrocarbons degradation techniques: a review. Int J Chem 5:43–55

    CAS  Google Scholar 

  • Umrania VV (2006) Bioremediation of toxic heavy metals using acidothermophilic autotrophes. Bioresour Technol 97:1237–1242.

    PubMed  CAS  Google Scholar 

  • Van der Putten WH, Vet LEM, Harvey JA, Wackers FL (2001) Linking above-ground and below-ground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evol 16:547–554

    Google Scholar 

  • Vande Broek A, Michiels J, Van Gool A, Vanderleyden J (1993) Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacterial nifH gene during association. Mol Plant Microbe Interact 6:592–600

    Google Scholar 

  • Vassilev A, Schwitzguebel JP, Thewys T, van Der Lelie D, Vangronsveld J (2004) The use of plants for remediation of metal contaminated soils. Sci World J 4:9–34

    CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    CAS  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Technical report: human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Wang X, Yu X, Bartha R (1990) Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil. Environ Sci Technol 24:1086–1089

    CAS  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    PubMed  CAS  Google Scholar 

  • White PJ (2003) Ion transport. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopaedia of applied plant sciences. Academic Press, London, pp 625–634

    Google Scholar 

  • Whitfield L, Richards AJ, Rimmer DL (2004) Effects of mycorrhizal colonization on Thymus polytrichus from heavy-metal contaminated sites in northern England. Mycorrhiza 14:47–54

    PubMed  CAS  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Google Scholar 

  • Wu FY, Ye ZH, Wu SC, Wong MH (2007) Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta 226:1363–1378

    PubMed  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:402647

    Google Scholar 

  • Yadav RS, Meena SC, Patel SI, Patel KI, Akhtar MS, Yadav BK, Panwar J (2012) Bioavailability of soil P for plant nutrition. In: Lichtfouse E (ed) Farming for food and water security, sustainable agriculture reviews 10. Springer, Dordrecht, pp 177–200

    Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang CH, Crowley DE, Menge JA (2001) 16S rDNA finger printing of rhizosphere bacterial communities associated with healthy and Phytophthora infected avocado roots. FEMS Microbiol Ecol 35:129–136

    PubMed  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    PubMed  CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    PubMed  Google Scholar 

  • Zimmermann P (2003) Root-secreted phosphomonoesterases mobilizing phosphorus from the rhizosphere: a molecular physiological study in Solanum tuberosum. Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland

    Google Scholar 

  • Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brijesh Kumar Yadav , Mohd. Sayeed Akhtar or Jitendra Panwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Yadav, B.K., Akhtar, M.S., Panwar, J. (2015). Rhizospheric Plant-Microbe Interactions: Key Factors to Soil Fertility and Plant Nutrition. In: Arora, N. (eds) Plant Microbes Symbiosis: Applied Facets. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2068-8_6

Download citation

Publish with us

Policies and ethics