Skip to main content

Natural Sources of Anti-inflammation

  • Chapter
  • First Online:
Inflammation: Natural Resources and Its Applications

Part of the book series: SpringerBriefs in Immunology ((BRIEFSIMMUN))

Abstract

All the anti-inflammatory sources or drugs achieve their effects by blocking the increase in prostaglandin (PG) synthesis. PG synthesis is blocked by blocking the enzyme cyclooxygenase – an enzyme in arachidonic acid cascade for the synthesis of prostanoids. Mother Nature created these natural supplements eons ago, and it has been present in ecosystems for over a billion years. Hundreds of plant metabolites are reported to have many pharmacological activities although most of these reports are of academic interest and very few find entry at clinical trials. Compilation of the information would help promote wider acceptance and use of these nature-based drugs in mainstream of medicine. The present chapter is directed towards compilation of the pharmacological attributes of natural sources in the drug discovery and development process as it could be a driving force to identify lead molecules providing an attractive strategy for novel and improved therapeutics. In this chapter, we are going to reveal the name of these natural medicines and different sources available to us and what health benefits it provides to us to fight against inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rasmussen RS, Morrissey MT (2007) Marine biotechnology for production of food ingredients. Adv Food Nutr Res 52:237–292

    CAS  PubMed  Google Scholar 

  2. Plaza M, Cifuentes A, Ibáñez E (2008) In the search of new functional food ingredients from algae. Trends Food Sci Technol 19:31–39

    CAS  Google Scholar 

  3. Aiello A, Borrelli F, Capasso R, Fattorusso E, Luciano P, Menna M (2003) Conicamin, a novel histamine antagonist from the mediterranean tunicate Aplidium conicum. Bioorg Med Chem Lett 13(24):4481–4483

    CAS  PubMed  Google Scholar 

  4. Chao CH, Wen ZH, Wu YC, Yeh HC, Sheu JH (2008) Cytotoxic and anti-inflammatory cembranoids from the soft coral Lobophytum crassum. J Nat Prod 71(11):1819–1824. doi:10.1021/np8004584

    CAS  PubMed  Google Scholar 

  5. Shen YC, Chen YH, Hwang TL, Guh JH, Khalil AT (2007) Four new briarane diterpenoids from the gorgonian coral Junceella fragilis. Helv Chim Acta 90(7):1391–1398

    CAS  Google Scholar 

  6. Kobayashi H, Kitamura K, Nagai K, Nakao Y, Fusetani N, van Soest RWM, Matsunaga S (2007) Carteramine A, an inhibitor of neutrophil chemotaxis, from the marine sponge Stylissa carteri. Tetrahedron Lett 48(12):2127–2129

    CAS  Google Scholar 

  7. Jayatilake GS, Freeberg DR, Liu Z, Richheimer SL, Blake ME, Bailey DT, Haridas V, Gutterman JU (2003) Isolation and structures of Avicins D and G: in vitro tumor-inhibitory Saponins derived from Acacia victoriae. J Nat Prod 66(6):779–783. doi:10.1021/np020400v

    CAS  PubMed  Google Scholar 

  8. İşcan G, Kirimer N, Kürkçüoglu M, Arabaci T, Küpeli E, Başer KH (2006) Biological activity and composition of the essential oils of Achillea schischkinii Sosn. and Achillea aleppica DC. subsp. J Agric Food Chem 54(1):170–173. doi:10.1021/jf051644z

    PubMed  Google Scholar 

  9. Küpeli E, Orhan İ, Küsmenoğlu Ş, Yeşilada E (2007) Evaluation of anti-inflammatory and antinociceptive activity of five Anatolian achillea species. Turk J Pharm Sci 4(2):89–99

    Google Scholar 

  10. De Caluwé E, Halamová K, Van Damme P (2009) Baobab (Adansonia digitata L.) a review of traditional uses, phytochemistry and pharmacology, African natural plant products. New discoveries and challenges in chemistry and quality. ACS Symp Ser 1021:51–84. doi:10.1021/bk-2009-1021.ch004

    Google Scholar 

  11. Yang X-W, Zhao J, Cui Y-X, Liu X-H, Ma C-M, Hattori M, Zhang L-H (1999) Anti-HIV-1 Protease Triterpenoid Saponins from the seeds of Aesculus chinensis. J Nat Prod 62(11):1510–1513. doi:10.1021/np990180u

    CAS  PubMed  Google Scholar 

  12. Wei F, Ma SC, Ma LY, But PP, Lin RC, Khan IA (2004) Antiviral flavonoids from the seeds of Aesculus chinensis. J Nat Prod 67(4):650–653

    CAS  PubMed  Google Scholar 

  13. Espín JC, Wichers HJ (1999) Slow-binding inhibition of mushroom (Agaricus bisporus) tyrosinase isoforms by tropolone. J Agric Food Chem 47(7):2638–2644. doi:10.1021/jf981055b

    PubMed  Google Scholar 

  14. Chen S, Oh SR, Phung S, Hur G, Ye JJ, Kwok SL, Shrode GE, Belury M, Adams LS, Williams D (2006) Anti-aromatase activity of phytochemicals in white button mushrooms (Agaricus bisporus). Cancer Res 66(24):12026–12034

    CAS  PubMed  Google Scholar 

  15. Wang Y-T, Huang Z-J, Chang H-M (2004) Proteomic analysis of human leukemic U937 cells incubated with conditioned medium of mononuclear cells stimulated by proteins from dietary mushroom of Agrocybe aegerita. J Proteome Res 3(4):890–896. doi:10.1021/pr049922h

    CAS  PubMed  Google Scholar 

  16. Lo KM, Cheung PCK (2005) Antioxidant activity of extracts from the fruiting bodies of Agrocybe aegerita var. alba. Food Chem 89(4):533–539

    CAS  Google Scholar 

  17. Zhao C, Sun H, Tong X, Qi Y (2003) An antitumour lectin from the edible mushroom Agrocybe aegerita. Biochem J 374:321–327. doi:10.1042/BJ20030300

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Takasaki M, Tokuda H, Nishino H, Konoshima T (1999) Cancer chemopreventive agents (Antitumor-promoters) from Ajuga decumbens. J Nat Prod 62(7):972–975. doi:10.1021/np990033w

    CAS  PubMed  Google Scholar 

  19. Konoshima T, Takasaki M, Tokuda H, Nishino H (2000) Cancer chemopreventive activity of an iridoid glycoside, 8-acetylharpagide from Ajuga decumbens. Cancer Lett 157(1):87–92

    CAS  PubMed  Google Scholar 

  20. Lawson LD (1998) Chapter 14: Garlic: a review of its medicinal effects and indicated active compounds. In: Phytomedicines of Europe, ACS symposium series 691. American Chemical Society, Washington, DC, pp 176–209. doi:10.1021/bk-1998-0691.ch014

    Google Scholar 

  21. Hutter JA, Salman M, Stavinoha WB, Satsangi N, Williams RF, Streeper RT, Weintraub ST (1996) Antiinflammatory C-Glucosyl Chromone from Aloe barbadensis. J Nat Prod 59(5):541–543. doi:10.1021/np9601519

    CAS  PubMed  Google Scholar 

  22. Cock IE (2008) Antimicrobial activity of Aloe barbadensis miller leaf gel components. Int J Microbiol 4:2

    Google Scholar 

  23. Hu Y, Xu J, Hu Q (2003) Evaluation of antioxidant potential of aloe vera (Aloe barbadensis Miller) extracts. J Agric Food Chem 51(26):7788–7791. doi:10.1021/jf034255i

    CAS  PubMed  Google Scholar 

  24. Ali MS, Tezuka Y, Awale S, Banskota AH, Kadota S (2001) Six sew Diarylheptanoids from the seeds of Alpinia blepharocaly. J Nat Prod 64(3):289–293. doi:10.1021/np000496y

    CAS  PubMed  Google Scholar 

  25. Ali MS, Banskota AH, Tezuka Y, Saiki I, Kadota S (2001) Antiproliferative activity of diarylheptanoids from the seeds of Alpinia blepharocalyx. Biol Pharm Bull 24(5):525–528

    CAS  PubMed  Google Scholar 

  26. Yang Y-L, Chang F-R, Wu C-C, Wang WY, Wu Y-C (2002) New ent-Kaurane diterpenoids with anti-platelet aggregation activity from Annona squamosa. J Nat Prod 65(10):1462–1467. doi:10.1021/np020191e

    CAS  PubMed  Google Scholar 

  27. Kaleem M, Asif M, Ahmed QU, Bano B (2006) Antidiabetic and antioxidant activity of Annona squamosa extract in streptozotocin-induced diabetic rats. Singap Med J 47(8):670–675

    CAS  Google Scholar 

  28. Wu T-S, Chan Y-Y, Leu Y-L (2001) Constituents of the roots and stems of Aristolochia mollissima. J Nat Prod 64(1):71–74. doi:10.1021/np0002886

    CAS  PubMed  Google Scholar 

  29. Yu JQ, Liao ZX, Cai XQ, Lei JC, Zou GL (2007) Composition, antimicrobial activity and cytotoxicity of essential oils from Aristolochia mollissima. Environ Toxicol Pharmacol 23(2):162–167. doi:10.1016/j.etap.2006.08.004

    CAS  PubMed  Google Scholar 

  30. Shen C-C, Syu W-J, Li S-Y, Lin C-H, Lee G-H, Sun C-M (2002) Antimicrobial activities of naphthazarins from Arnebia euchroma. J Nat Prod 65(12):1857–1862. doi:10.1021/np010599w

    CAS  PubMed  Google Scholar 

  31. Patil AD, Freyer AJ, Killmer L, Offen P, Taylor PB, Votta BJ, Johnson RK (2002) A new dimeric dihydrochalcone and a new prenylated flavone from the bud covers of artocarpus altilis: potent inhibitors of Cathepsin K. J Nat Prod 65(4):624–627. doi:10.1021/np0105634

    CAS  PubMed  Google Scholar 

  32. Jain AP (2009) Evaluation of Anticonvulsant activity of methanolic extract of Artocarpus heterophyllus lam. (Moraceae) in mice. J Pharm Res 2(6):1004–1007

    Google Scholar 

  33. Khan MR, Omoloso AD, Kihara M (2003) Antibacterial activity of Artocarpus heterophyllus. Fitoterapia 74(5):501–505

    CAS  PubMed  Google Scholar 

  34. Wei B-L, Weng J-R, Chiu P-H, Hung C-F, Wang J-P, Lin C-N (2005) Antiinflammatory flavonoids from Artocarpus heterophyllus and Artocarpus communis. J Agric Food Chem 53(10):3867–3871. doi:10.1021/jf047873n

    CAS  PubMed  Google Scholar 

  35. Loizzo MR, Tundis R, Chandrika UG, Abeysekera AM, Menichini F, Frega NG (2010) Antioxidant and antibacterial activities on foodborne pathogens of Artocarpus heterophyllus Lam. (Moraceae) leaves extracts. J Food Sci 75(5):291–295

    Google Scholar 

  36. Lakheda S, Devalia R, Jain UK, Gupta N, Raghuwansi AS, Patidar N (2005) Anti-inflammatory activity of Artocarpus heterophyllus bark, Pelagia Research Library. Der Pharmacia Sinica 2(2)

    Google Scholar 

  37. Jang DS, Cuendet M, Fong HHS, Pezzuto JM, Kinghorn AD (2004) Constituents of Asparagus officinalis evaluated for inhibitory activity against cyclooxygenase-2. J Agric Food Chem 52(8)):2218–2222. doi:10.1021/jf0305229

    CAS  PubMed  Google Scholar 

  38. Huang XF, Lin YY, Kong LY (2008) Steroids from the roots of Asparagus officinalis and their cytotoxic activity. J Integr Plant Biol 50(6):717–722. doi:10.1111/j.1744-7909.2008.00651.x

    CAS  PubMed  Google Scholar 

  39. Çalış İ, Zor M, Saracoǧlu İ, Işımer A, Rüegger H (1996) Four novel cycloartane glycosides from Astragalus oleifolius. J Nat Prod 59(11):1019–1023. doi:10.1021/np9604184

    PubMed  Google Scholar 

  40. Ozipek M, Dönmez AA, Caliş I, Brun R, Rüedi P, Tasdemir D (2005) Leishmanicidal cycloartane-type triterpene glycosides from Astragalus oleifolius. Phytochemistry 66(10):1168–1173

    PubMed  Google Scholar 

  41. Resch M, Steigel A, Chen Z-l, Bauer R (1998) 5-lipoxygenase and cyclooxygenase-1 inhibitory active compounds from Atractylodes lancea. J Nat Prod 61(3):347–350. doi:10.1021/np970430b

    CAS  PubMed  Google Scholar 

  42. Wang Y, Dai CC, Chen Y (2009) Antimicrobial activity of volatile oil from Atractylodes lancea against three species of endophytic fungi and seven species of exogenous fungi. J Appl Ecol 20(11):2778–2784

    Google Scholar 

  43. Lin Y, Jin T, Wu X, Huang Z, Fan J, Chan WL (1997) A novel bisesquiterpenoid, biatractylolide from the Chinese herbal plant Atractylodes macrocephala. J Nat Prod 60(1):27–28. doi:10.1021/np9603582

    CAS  Google Scholar 

  44. Jiang H, Shi J, Li Y (2011) Screening for compounds with aromatase inhibiting activities from Atractylodes macrocephala Koidz. Molecules 16(4):3146–3151

    CAS  PubMed  Google Scholar 

  45. Bennett RN, Mellon FA, Rosa EAS, Perkins L, Kroon PA (2004) Profiling glucosinolates, flavonoids, alkaloids, and other secondary metabolites in tissues of Azima tetracantha L. (Salvadoraceae). J Agric Food Chem 52(19):5856–5862. doi:10.1021/jf040091+

    CAS  PubMed  Google Scholar 

  46. Begum TN, Hussain M, Ilyas M, Anand AV (2011) Antipyretic activity of azima tetracantha in experimental animals. Int J Curr Biomed Pharm Res 1(2):41–44

    Google Scholar 

  47. Nakasugi T, Komai K (1998) Antimutagens in the Brazilian folk medicinal plant Carqueja (Baccharis trimera Less.). J Agric Food Chem 46(7):2560–2564. doi:10.1021/jf9711045

    CAS  Google Scholar 

  48. Soicke H, Leng Peschlow E (1987) Characterization of flavonoids from baccharis trimera and their antihepatotoxic properties. Planta Med 53(1):37–39. doi:10.1055/s-2006-962613

    CAS  PubMed  Google Scholar 

  49. Zhou Y, Shen Y-H, Zhang C, Su J, Liu R-H, Zhang W-D (2007) Triterpene saponins from bacopa monnieri and their antidepressant effects in two mice models. J Nat Prod 70(4):652–655. doi:10.1021/np060470s

    CAS  PubMed  Google Scholar 

  50. Ghosh T, Maity TK, Singh J (2011) Antihyperglycemic activity of bacosine, a triterpene from Bacopa monnieri, in alloxan-induced diabetic rats. Planta Med 77(8):804–808

    CAS  PubMed  Google Scholar 

  51. Braca A, De Tommasi N, Di Bari L, Pizza C, Politi M, Morelli I (2001) Antioxidant principles from Bauhinia tarapotensis. J Nat Prod 64(7):892–895. doi:10.1021/np0100845

    CAS  PubMed  Google Scholar 

  52. Ju J-H, Liu D, Lin G, Xu D, Han B, Yang J-s, Tu G-z, Ma L-b (2002) Beesiosides a−F, six new cycloartane triterpene glycosides from Beesia calthaefolia. J Nat Prod 65(1):42–47. doi:10.1021/np010293p

    CAS  PubMed  Google Scholar 

  53. Mazumder S, Morvan C, Thakur S, Ray B (2004) Cell wall polysaccharides from chalkumra (Benincasa hispida) fruit. Part I. Isolation and characterization of pectins. J Agric Food Chem 52(11):3556–3562. doi:10.1021/jf0343130

    CAS  PubMed  Google Scholar 

  54. Samad NB, Debnath T, Jin HL, Lee BR, Park PJ, Lee SY, Lim BO (June) Antioxidant Activity of Benincasa Hispida Seeds. J Food Biochem, doi:10.1111/J.1745-4514.2011.00643.X

    Google Scholar 

  55. De Tommasi N, Aquino R, Cumandà J, Mahmood N (1997) Flavonol and chalcone ester glycosides from Bidens leucantha. J Nat Prod 60(3):270–273. doi:10.1021/np960572q

    PubMed  Google Scholar 

  56. Inngjerdingen KT, Coulibaly A, Diallo D, Michaelsen TE, Paulsen BS (2006) A complement fixing polysaccharide from biophytum petersianum Klotzsch, a medicinal plant from Mali, West Africa. Biomacromolecules 7(1):48–53. doi:10.1021/bm050330h

    CAS  PubMed  Google Scholar 

  57. Inngjerdingen M, Inngjerdingen KT, Patel TR, Allen S, Chen X, Rolstad B, Morris GA, Harding SE, Michaelsen TE, Diallo D, Paulsen BS (2008) Pectic polysaccharides from Biophytum petersianum Klotzsch, and their activation of macrophages and dendritic cells. Glycobiology 18(12):1074–1084. doi:10.1093/glycob/cwn090

    CAS  PubMed  Google Scholar 

  58. Takashima J, Ohsaki A (2001) Acutifolins A-F, a New flavan-derived constituent and five new flavans from Brosimum acutifolium. J Nat Prod 64(12):1493–1496. doi:10.1021/np010389j

    CAS  PubMed  Google Scholar 

  59. Takashima J, Komiyama K, Ishiyama H, Kobayashi J, Ohsaki A (2005) Brosimacutins J-M, four new flavonoids from Brosimum acutifolium and their cytotoxic activity. Planta Med 71(7):654–658

    CAS  PubMed  Google Scholar 

  60. Cuendet M, Pezzuto JM (2004) Antitumor activity of bruceantin: an old drug with new promise. J Nat Prod 67(2):269–272. doi:10.1021/np030304+

    CAS  PubMed  Google Scholar 

  61. Gillin FD, Reiner DS, Suffness M (1982) Bruceantin, a potent amoebicide from a plant, Brucea antidysenterica. Antimicrob Agents Chemother 22(2):342–345

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Liao Y-H, Houghton PJ, Hoult JRS (1999) Novel and known constituents from Buddleja species and their activity against leukocyte eicosanoid generation. J Nat Prod 62(9):1241–1245. doi:10.1021/np990092+

    CAS  PubMed  Google Scholar 

  63. Houghton PJ, Hikino H (1989) Anti-hepatotoxic activity of extracts and constituents of Buddleja species. Planta Med 55(2):123–126

    CAS  PubMed  Google Scholar 

  64. Hernández-Hernández JD, Román-Marín LU, Cerda-García-Rojas CM, Joseph-Nathan P (2005) Verticillane derivatives from Bursera suntui and Bursera kerberi. J Nat Prod 68(11):1598–1602. doi:10.1021/np050323e

    PubMed  Google Scholar 

  65. García-Gutiérrez HA, Cerda-García-Rojas CM, Hernández-Hernández JD, Román-Marín LU, Joseph-Nathana P (2008) Oxygenated verticillene derivatives from Bursera suntui. Phytochemistry 69:2844–2848

    PubMed  Google Scholar 

  66. Kalauni SK, Awale S, Tezuka Y, Banskota AH, Linn TZ, Kadota S (2004) Cassane- and norcassane-type diterpenes of Caesalpinia crista from Myanmar. J Nat Prod 67(11):1859–1863. doi:10.1021/np049742m

    CAS  PubMed  Google Scholar 

  67. Kalauni SK, Awale S, Tezuka Y, Banskota AH, Linn TZ, Asih PB, Syafruddin D, Kadota S (2006) Antimalarial activity of cassane- and norcassane-type diterpenes from Caesalpinia crista and their structure-activity relationship. Biol Pharm Bull 29(5):1050–1052

    CAS  PubMed  Google Scholar 

  68. Lee C-P, Yen G-C (2006) Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil. J Agric Food Chem 54(3):779–784. doi:10.1021/jf052325a

    CAS  PubMed  Google Scholar 

  69. Ramji D, Sang S, Liu Y, Rosen RT, Ghai G, Ho C-T, Yang CS, Huang M-T (2005) Chapter 20: Effect of black tea theaflavins and related benzotropolone derivatives on 12-O-tetradecanoylphorbol-13-acetate-induced mouse ear inflammation and inflammatory mediators. In: Fereidoon S, Chi-Tang H (eds) Phenolic compounds in foods and natural health products, ACS symposium series, 909. American Chemical Society, Washington, DC, pp 242–253. doi:10.1021/bk-2005-0909.ch020

    Google Scholar 

  70. Henning SM, Niu Y, Lee NH, Thames GD, Minutti RR, Wang H, Go VL, Heber D (2004) Bioavailability and antioxidant activity of tea flavanols after consumption of green tea, black tea, or a green tea extract supplement. Am J Clin Nutr 80(6):1558–1564

    CAS  PubMed  Google Scholar 

  71. Jhoo J-W (2007) Antioxidant and anti-cancer activities of green and black tea polyphenols, antioxidant measurement and applications. ACS Symp Ser 956:215–225. doi:10.1021/bk-2007-0956.ch015

    CAS  Google Scholar 

  72. Viegas C Jr, Bolzani V d S, Furlan M, Furlan M, Barreiro EJ, Young MCM, Tomazela D, Eberlin MN (2004) Further bioactive piperidine alkaloids from the flowers and green fruits of Cassia spectabilis. J Nat Prod 67(5):908–910. doi:10.1021/np0303963

    CAS  PubMed  Google Scholar 

  73. Torey A, Sasidharan S (2011) Anti-Candida albicans biofilm activity by Cassia spectabilis standardized methanol extract: an ultrastructural study. Eur Rev Med Pharmacol Sci 15(8):875–882

    CAS  PubMed  Google Scholar 

  74. Yen G-C, Chuang D-Y (2000) Antioxidant properties of water extracts from Cassia tora L. In relation to the degree of roasting. J Agric Food Chem 48(7):2760–2765. doi:10.1021/jf991010q

    CAS  PubMed  Google Scholar 

  75. Yang C, Yuan C, Jia Z (2003) Xanthanolides, germacranolides, and other constituents from Carpesium longifolium. J Nat Prod 66(12):1554–1557. doi:10.1021/np030278f

    CAS  PubMed  Google Scholar 

  76. Yang C, Yuan C, Jia Z (2003) Xanthanolides, germacranolides, and other constituents from Carpesium longifolium. J Nat Prod 66(12):1554–1557

    CAS  PubMed  Google Scholar 

  77. Matsuo Y, Watanabe K, Mimaki Y (2009) Triterpene glycosides from the underground parts of Caulophyllum thalictroides. J Nat Prod 72(6):1155–1160

    CAS  PubMed  Google Scholar 

  78. Koorbanally NA, Randrianarivelojosia M, Mulholland DA, Quarles van Ufford L, van den Berg AJ (2002) Bioactive constituents of Cedrelopsis microfoliata. J Nat Prod 65(9):1349–1352

    CAS  PubMed  Google Scholar 

  79. Hwang BY, Kim HS, Lee JH, Hong YS, Ro JS, Lee KS, Lee JJ (2001) Antioxidant benzoylated flavan-3-ol glycoside from Celastrus orbiculatus. J Nat Prod 64(1):82–84. doi:10.1021/np000251l

    CAS  PubMed  Google Scholar 

  80. Park HJ, Cha DS, Jeon H (2011) Antinociceptive and hypnotic properties of Celastrus orbiculatus. J Ethnopharmacol 137(3):1240–1244

    PubMed  Google Scholar 

  81. Dini I, Tenore GC, Dini A (2002) Oleanane saponins in kancolla, a sweet variety of Chenopodium quinoa. J Nat Prod 65(7):1023–1026. doi:10.1021/np010625q

    CAS  PubMed  Google Scholar 

  82. Chao LK, Hua K-F, Hsu H-Y, Cheng S-S, Liu J-Y, Chang S-T (2005) Study on the antiinflammatory activity of essential oil from leaves of Cinnamomum osmophloeum. J Agric Food Chem 53(18):7274–7278. doi:10.1021/jf051151u

    CAS  PubMed  Google Scholar 

  83. Yoo KM, Lee KW, Park JB, Lee HJ, Hwang IK (2004) Variation in major antioxidants and total antioxidant activity of Yuzu (Citrus junos Sieb ex Tanaka) during maturation and between cultivars. J Agric Food Chem 52(19):5907–5913. doi:10.1021/jf0498158

    CAS  PubMed  Google Scholar 

  84. Ho S-C, Lin C-C (2008) Investigation of heat treating conditions for enhancing the anti-inflammatory activity of citrus fruit (Citrus reticulata) peels. J Agric Food Chem 56(17):7976–7982. doi:10.1021/jf801434c

    CAS  PubMed  Google Scholar 

  85. Jayaprakasha GK, Negi PS, Sikder S, Rao LJ, Sakariah KK (2000) Antibacterial activity of Citrus reticulata peel extracts. Z Naturforsch C 55(11–12):1030–1034

    CAS  PubMed  Google Scholar 

  86. Li S, Lo C-Y, Ho C-T (2006) Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. J Agric Food Chem 54(12):4176–4185. doi:10.1021/jf060234n

    CAS  PubMed  Google Scholar 

  87. Li S, Lo C-Y, Dushenkov S, Ho C-T (2008) Polymethoxyflavones: chemistry, biological activity and occurrence in orange peel. In: Dietary supplements, ACS symposium series 987. American Chemical Society, Washington, DC, pp 191–210. doi:10.1021/bk-2008-0987.ch013

    Google Scholar 

  88. Anagnostopoulou MA, Kefalas P, Papageorgiou VP, Assimopoulou AN, Boskou D (2006) Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrussinensis). Food Chem 94(1):19–25

    CAS  Google Scholar 

  89. Kuo C-C, Chiang W, Liu G-P, Chien Y-L, Chang J-Y, Lee C-K, Lo J-M, Huang S-L, Shih M-C, Kuo Y-H (2002) 2,2′-Diphenyl −1-picrylhydrazyl radical-scavenging active components from adlay (Coix lachryma-jobi L. Var. ma-yuen Stapf) hulls. J Agric Food Chem 50(21):5850–5855. doi:10.1021/jf020391w

    CAS  PubMed  Google Scholar 

  90. Su Y, Guo D, Guo H, Liu J, Zheng J, Koike K, Nikaido T (2001) Four new triterpenoid saponins from Conyza blinii. J Nat Prod 64(1):32–36. doi:10.1021/np000310v

    CAS  PubMed  Google Scholar 

  91. Lee H-S (2002) Rat lens aldose reductase inhibitory activities of coptis japonica root-derived isoquinoline alkaloids. J Agric Food Chem 50(24):7013–7016. doi:10.1021/jf020674o

    CAS  PubMed  Google Scholar 

  92. Kim JP, Jung MY, Kim JP, Kim SY (2000) Antiphotooxidative activity of protoberberines derived from Coptis japonica makino in the chlorophyll-sensitized photooxidation of oil. J Agric Food Chem 48(4):1058–1063

    CAS  PubMed  Google Scholar 

  93. Cho JY, Baik KU, Yoo ES, Yoshikawa K, Park MH (2006) In vitro antiinflammatory effects of neolignan woorenosides from the rhizomes of Coptis japonica. J Nat Prod 63(9):1205–1209. doi:10.1021/np9902791

    Google Scholar 

  94. Abdel-Halim OB, Morikawa T, Ando S, Matsuda H, Yoshikawa M (2004) New crinine-type alkaloids with inhibitory effect on induction of inducible nitric oxide synthase from Crinum yemense. J Nat Prod 67(7):1119–1124. doi:10.1021/np030529k

    CAS  PubMed  Google Scholar 

  95. Abdel-Halim OB, Marzouk AM, Mothana R, Awadh N (2008) A new tyrosinase inhibitor from Crinum yemense as potential treatment for hyperpigmentation. Pharmazie 63(5):405–407

    CAS  PubMed  Google Scholar 

  96. Fattorusso E, Taglialatela-Scafati O, Campagnuolo C, Santelia FU, Appendino G, Spagliardi P (2002) Diterpenoids from Cascarilla (Croton eluteria Bennet). J Agric Food Chem 50(18):5131–5138. doi:10.1021/jf0203693

    CAS  PubMed  Google Scholar 

  97. Nath R, Roy S, De B, Dutta CM (2013) Anticancer and antioxidant activity of croton: a review. Int J Pharmacy Pharm Sci 5(2):63–70

    Google Scholar 

  98. Kuo P-C, Shen Y-C, Yang M-L, Wang S-H, Dinh TT, Dung NX, Chiang P-C, Lee K-H, Lee E-J, Wu T-S (2007) Crotonkinins A and B and related diterpenoids from Croton tonkinensis as anti-inflammatory and antitumor agents. J Nat Prod 70(12):1906–1909. doi:10.1021/np070383f

    CAS  PubMed  Google Scholar 

  99. Giang PM, Son PT, Matsunami K, Otsuka H (2006) Anti-staphylococcal activity of ent-kaurane-type diterpenoids from Croton tonkinensis. J Nat Med 60:93–95

    CAS  Google Scholar 

  100. Pande M, Dubey VK, Yadav SC, Jagannadham MV (2006) A novel serine protease cryptolepain from Cryptolepis buchanani: purification and biochemical characterization. J Agric Food Chem 54(26):10141–10150. doi:10.1021/jf062206a

    CAS  PubMed  Google Scholar 

  101. Vinayaka KS, Prashith KTR, Mallikarjun N, Sateesh VN (2010) Anti-dermatophyte activity of Cryptolepis buchanani Roem. & Schult. Pharmacognosy J 2(7):170–172

    Google Scholar 

  102. Bierer DE, Fort DM, Mendez CD et al (1998) Ethnobotanical-directed discovery of the antihyperglycemic properties of cryptolepine: its isolation from Cryptolepis sanguinolenta, synthesis, and in vitro and in vivo activities. J Med Chem 41(6):894–901. doi:10.1021/jm9704816

    CAS  PubMed  Google Scholar 

  103. Wichtl M (1998) Curcuma (tumeric): biological activity and active compounds. In: Phytomedicines of Europe chemistry and biological activity, ACS symposium series. American Chemical Society, Washington, DC, pp 133–139. doi:10.1021/bk-1998-0691.ch011

    Google Scholar 

  104. Gupta SK, Agarwal R, Srivastava S, Agarwal P, Agrawal SS, Saxena R, Galpalli N (2008) The anti-inflammatory effects of Curcuma longa and berberis aristata in endotoxin-induced uveitis in rabbits. Invest Ophthalmol Vis Sci 49(9):4036–4040. doi:10.1167/iovs.07-1186

    PubMed  Google Scholar 

  105. Nishiyama T, Mae T, Kishida H, Tsukagawa M, Mimaki Y, Kuroda M, Sashida Y, Takahashi K, Kawada T, Nakagawa K, Kitahara M (2005) Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 Diabetic KK-AyMice. J Agric Food Chem 53(4):959–963. doi:10.1021/jf0483873

    CAS  PubMed  Google Scholar 

  106. Liju VB, Jeena K, Kuttan R (2011) An evaluation of antioxidant, anti-inflammatory, and antinociceptive activities of essential oil from Curcuma longa L. Indian J Pharm 43(5):526–531. doi:10.4103/0253-7613.84961

    CAS  Google Scholar 

  107. De Tommasi N, De Simone F, Speranza G, Pizza C (1996) Studies on the constituents of Cyclanthera pedata (Caigua) seeds: isolation and characterization of six new cucurbitacin glycosides. J Agric Food Chem 44(8):2020–2025. doi:10.1021/jf950532c

    Google Scholar 

  108. Cheel J, Theoduloz C, Rodríguez J, Schmeda-Hirschmann G (2005) Free radical scavengers and antioxidants from lemongrass (Cymbopogon citratus (DC.) Stapf.). Food Chem 53(7):2511–2517. doi:10.1021/jf0479766

    CAS  Google Scholar 

  109. El Bitar H, Van Nguyen H, Gramain A, Sévenet T, Bodo B (2004) New Alkaloids from Daphniphyllum calycinum. J Nat Prod 67(7):1094–1099. doi:10.1021/np040038f

    PubMed  Google Scholar 

  110. Gamez EJ, Luyengi L, Lee SK, Zhu LF, Zhou BN, Fong HH, Pezzuto JM, Kinghorn AD (1998) Antioxidant flavonoid glycosides from Daphniphyllum calycinum. J Nat Prod 61(5):706–708

    CAS  PubMed  Google Scholar 

  111. Lin T-H, Chang S-J, Chen C-C, Wang J-P, Tsao L-T (2001) Two phenanthraquinones from Dendrobium moniliforme. J Nat Prod 64(8):1084–1086. doi:10.1021/np010016i

    CAS  PubMed  Google Scholar 

  112. Shu W, Fengjuan W, Yongping C (2009) Anti-oxidation activity in vitro of polysaccharides of Dendrobium Huoshanense and Dendrobium moniliforme, Institute of Agricultural Information, Chinese Academy of Agricultural Sciences; http://agris.fao.org/aos/records/CN2010001368

  113. Lin YM, Anderson H, Flavin MT, Pai YH, Mata-Greenwood E, Pengsuparp T, Pezzuto JM, Schinazi RF, Hughes SH, Chen FC (1997) In vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora. J Nat Prod 60(9):884–888

    CAS  PubMed  Google Scholar 

  114. Su BN, Park EJ, Nikolic D, Schunke Vigo J, Graham JG, Cabieses F, van Breemen RB, Fong HH, Farnsworth NR, Pezzuto JM, Kinghorn AD (2003) Activity-guided isolation of novel norwithanolides from Deprea subtriflora with potential cancer chemopreventive activity. J Org Chem 68(6):2350–2361. doi:10.1021/jo020542u

    CAS  PubMed  Google Scholar 

  115. Johansson S, Göransson U, Luijendijk T, Backlund A, Claeson P, Bohlin L (2002) A neutrophil multitarget functional bioassay to detect anti-inflammatory natural products. J Nat Prod 65(1):32–41. doi:10.1021/np010323o

    CAS  PubMed  Google Scholar 

  116. Lin AM-Y, Wu L-Y, Hung K-C, Huang H-J, Lei YP, Lu W-C, Hwang LS (2012) Neuroprotective effects of longan (Dimocarpus longan lour.) flower water extract on MPP+−induced neurotoxicity in rat brain. J Agric Food Chem 60(36):9188–9194. doi:10.1021/jf302792

    CAS  PubMed  Google Scholar 

  117. Zheng G-m, Xu L-x, Xie H-h, WU P, Wei X-y (2010) Chemical constituents from the pulps of Dimocarpus longan. J Trop Subtrop Bot 1:82–86

    Google Scholar 

  118. De Souza NJ (1993) Rohitukine and forskolin second-generation immunomodulatory, intraocular-pressure-lowering, and cardiotonic analogues. Hum Med Agents Plant 534:331–340. doi:10.1021/bk-1993-0534.ch022

    Google Scholar 

  119. Lawson LD, Bauer R (1998) Echinacea: biological effects and active principles. In: Phytomedicines of Europe, ACS symposium series, 691. American Chemical Society, Washington, DC, pp 140–157. doi:10.1021/bk-1998-0691.ch012

    Google Scholar 

  120. Watanabe M (1999) Antioxidative phenolic compounds from Japanese Barnyard Millet (Echinochloa utilis) grains. J Agric Food Chem 47(11):4500–4505. doi:10.1021/jf990498s

    CAS  PubMed  Google Scholar 

  121. Yokozawa T, Kim HY, Kim HJ et al (2007) Amla (Emblica officinalis Gaertn.) attenuates age-related renal dysfunction by oxidative stress. J Agric Food Chem 55(19):7744–7752. doi:10.1021/jf072105s

    CAS  PubMed  Google Scholar 

  122. Jeena JK, Kuttan R (2000) Hepatoprotective activity of Emblica officinalis and Chyavanaprash. J Ethnopharmacol 72(2):135–140

    Google Scholar 

  123. Asmawi MZ, Kankaanranta H, Moilanen E, Vapaatalo H (1993) Anti-inflammatory activities of Emblica officinalis Gaertn leaf extracts. J Pharm Pharmacol 45(6):581–584

    CAS  PubMed  Google Scholar 

  124. Patel SS, Goyal RK (2012) Emblica officinalis Geart: a comprehensive review on phytochemistry, pharmacology and ethnomedicinal uses. Res J Med Plant 6:6–16. doi:10.3923/rjmp.2012.6.16

    CAS  Google Scholar 

  125. Shikov AN, Poltanov EA, Damien Dorman HJ, Makarov VG, Tikhono VP, Hiltunen R (2006) Chemical composition and in vitro antioxidant evaluation of commercial water-soluble Willow Herb (Epilobium angustifolium L.) extracts. J Agric Food Chem 54(10):3617–3624. doi:10.1021/jf052606i

    CAS  PubMed  Google Scholar 

  126. Le Claire E, Schwaiger S, Banaigs B, Stuppner H, Gafner F (2005) Distribution of a new rosmarinic acid derivative in Eryngium alpinum L. and other Apiaceae. J Agric Food Chem 53(11):4367–4372. doi:10.1021/jf050024v

    PubMed  Google Scholar 

  127. Miyazawa M, Hisama M (2003) Antimutagenic activity of phenylpropanoids from clove (Syzygium aromaticum). J Agric Food Chem 51(22):6413–6422. doi:10.1021/jf030247q

    CAS  PubMed  Google Scholar 

  128. Patel BK, Jagannadham MV (2003) A high cysteine containing thiol proteinase from the latex of Ervatamia heyneana: purification and comparison with Ervatamin B and C from Ervatamia coronaria. J Agric Food Chem 51(21):6326–6334. doi:10.1021/jf026184d

    CAS  PubMed  Google Scholar 

  129. Silva GL, Cui B, Chávez D et al (2001) Modulation of the multidrug-resistance phenotype by new tropane alkaloid aromatic esters from Erythroxylum pervillei. J Nat Prod 64(12):1514–1520. doi:10.1021/np010295+

    CAS  PubMed  Google Scholar 

  130. Agarwal N, Chandra A, Tyagi LK (2011) Herbal medicine: alternative treatment for cancer therapy. Int J Pharma Sci Res 2(9):2249–2258

    Google Scholar 

  131. Hegde VR, Dai P, Patel MG, Puar MS, Das P, Pai J, Bryant R, Cox PA (1997) Phospholipase A2 inhibitors from an erythrina species from Samoa. J Nat Prod 60(6):537–539. doi:10.1021/np960533e

    CAS  Google Scholar 

  132. Tanaka H, Sato M, Fujiwara S, Hirata M, Etoh H, Takeuchi H (2002) Antibacterial activity of isoflavonoids isolated from Erythrina variegata against methicillin-resistant Staphylococcus aureus. Lett Appl Microbiol 35(6):494–498

    CAS  PubMed  Google Scholar 

  133. Damu AG, Kuo P-C, Shi L-S, Li C-Y, Kuoh C-S, Wu P-L, Wu T-S (2005) Phenanthroindolizidine alkaloids from the stems of Ficus septic. J Nat Prod 68(7):1071–1075. doi:10.1021/np050095o

    CAS  PubMed  Google Scholar 

  134. Nugroho AE, Hermawan A, Nastiti K, Suven, Elisa P, Hadibarata T, Meiyanto E (2012) Immunomodulatory effects of hexane insoluble fraction of Ficus septica Burm. F. in doxorubicin-treated rats. Asian Pac J Cancer Prev 13(11):5785–5790

    PubMed  Google Scholar 

  135. Yoshikawa K, Inoue M, Matsumoto Y, Sakakibara C, Miyataka H, Matsumoto H, Arihara S (2005) Lanostane triterpenoids and triterpene glycosides from the fruit body of Fomitopsis pinicola and their inhibitory activity against COX-1 and COX-2. J Nat Prod 68(1):69–73. doi:10.1021/np040130b

    CAS  PubMed  Google Scholar 

  136. Choi DB, Park S-S, Ding J-L, Cha W-S (2007) Effects of Fomitopsis pinicola extracts on antioxidant and antitumor activities. Biotechnol Bioprocess Eng 12(5):516–524

    CAS  Google Scholar 

  137. Wang SY, Bunce JA, Maas JL (2003) Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. J Agric Food Chem 51(15):4315–4432. doi:10.1021/jf021172d

    CAS  PubMed  Google Scholar 

  138. Kleinwächter P, Anh N, Kiet TT, Schlegel B, Dahse H-M, Härtl A, Gräfe U (2001) Colossolactones, new triterpenoid metabolites from a Vietnamese mushroom Ganoderma colossum. J Nat Prod 64(2):236–239. doi:10.1021/np000437k

    PubMed  Google Scholar 

  139. Ofodile LN, Uma N, Grayer RJ, Ogundipe OT, Simmonds MS (2012) Antibacterial compounds from the mushroom Ganoderma colossum from Nigeria. Phytother Res 26(5):748–751. doi:10.1002/ptr.3598

    CAS  PubMed  Google Scholar 

  140. Huang M-T, Liu Y, Badmaev V, Ho C-T (2008) Dietary supplements. In: Antiinflammatory and anticancer activities of garcinol, ACS symposium series 987, pp 293–303. doi:10.1021/bk-2008-0987.ch020

    Google Scholar 

  141. Yamaguchi F, Ariga T, Yoshimura Y, Nakazawa H (2000) Antioxidative and anti-glycation activity of garcinol from Garcinia indica fruit rind. J Agric Food Chem 48(2):180–185. doi:10.1021/jf990845y

    CAS  PubMed  Google Scholar 

  142. Khatib NA, Pawase K, Patil PA (2010) Evaluation of antiinflammation activity of Garcinia Indica fruit rind extracts in Wistar rats. Int J Res Ayur Pharm 1(2):449–454

    Google Scholar 

  143. Huang Y-L, Chen C-C, Chen Y-J, Huang R-L, Shieh B-J (2001) Three Xanthones and a Benzophenone from Garcinia mangostana. J Nat Prod 64(7):903–906. doi:10.1021/np000583q

    CAS  PubMed  Google Scholar 

  144. Suksamrarn S, Suwannapoch N, Phakhodee W, Thanuhiranlert J, Ratananukul P, Chimnoi N, Suksamrarn A (2003) Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chem Pharm Bull 51(7):857–859

    CAS  PubMed  Google Scholar 

  145. Chen L-G, Yang L-L, Wang C-C (2008) Anti-inflammatory activity of mangostins from Garcinia mangostana. Food Chem Toxicol 46:688–693

    CAS  PubMed  Google Scholar 

  146. Chiang Y-M, Kuo Y-H, Oota S, Fukuyama Y (2003) Xanthones and benzophenones from the Stems of Garcinia multiflora. J Nat Prod 66(8):1070–1073. doi:10.1021/np030065q

    CAS  PubMed  Google Scholar 

  147. Lee JH, Lee DU, Jeong CS (2009) Gardenia jasminoides Ellis ethanol extract and its constituents reduce the risks of gastritis and reverse gastric lesions in rats. Food Chem Toxicol 47(6):1127–11231

    CAS  PubMed  Google Scholar 

  148. Lin K-W, Huang A-M, Tu H-Y, Lee L-Y, Wu C-C, Hour T-C, Yang S-C, Pu Y-S, Lin C-N (2011) Xanthine oxidase inhibitory triterpenoid and phloroglucinol from guttiferaceous plants inhibit growth and induced apoptosis in human NTUB1 cells through a ROS-dependent mechanism. J Agric Food Chem 59(1):407–414. doi:10.1021/jf1041382

    CAS  PubMed  Google Scholar 

  149. Minami H, Takahashi E, Fukuyama Y, Kodama M, Yoshizawa T, Nakagawa K (1995) Novel xanthones with superoxide scavenging activity from Garcinia subelliptica. Chem Pharm Bull 43(2):347–349

    CAS  PubMed  Google Scholar 

  150. Maldonado PD, Rivero-Cruz I, Mata R, Pedraza-Chaverr J (2005) Antioxidant activity of A-Type Proanthocyanidins from Geranium niveum (Geraniaceae). J Agric Food Chem 53(6):1996–2001. doi:10.1021/jf0483725

    CAS  PubMed  Google Scholar 

  151. Şöhretoğlu D, Ekizoğlu M, Özalp M (2008) Free radical scavenging and antimicrobial activities of some geranium species. J Fac Pharm 28(2):115–124

    Google Scholar 

  152. Biondi DM, Rocco C, Ruberto G (2003) New dihydrostilbene derivatives from the leaves of Glycyrrhiza glabra and evaluation of their antioxidant activity. J Nat Prod 66(4):477–480. doi:10.1021/np020365s

    CAS  PubMed  Google Scholar 

  153. Ambawade SD, Kasture VS, Kasture SB (2002) Anticonvulsant activity of roots and rhizomes of Glycyrrhiza glabra. Indian J Pharmacol Short Commun 34(4):251–255

    Google Scholar 

  154. Tanaka A, Shibamoto T (2008) Antioxidant and antiinflammatory activities of Licorice Root (Glycyrrhiza uralensis), aroma extract. In: Functional food and health, ACS symposium series 993, pp 229–237. doi:10.1021/bk-2008-0993.ch020

    Google Scholar 

  155. Zhang J, Gao WY, Yan S, Zhao Y (2012) Effects of space flight on the chemical constituents and anti-inflammatory activity of licorice (Glycyrrhiza uralensis Fisch). Int J Prod Res 11(2):601–609

    CAS  Google Scholar 

  156. Yao CS, Lin M, Wang L (2006) Isolation and biomimetic synthesis of anti-inflammatory stilbenolignans from Gnetum cleistostachyum. Chem Pharm Bull 54(7):1053–1057

    CAS  PubMed  Google Scholar 

  157. Cheng K-W, Wang M, Chen F, Ho C-T (2008) Dietary supplements, oligostilbenes from gnetum species and anticarcinogenic and antiinflammatory activities of oligostilbenes, ACS symposium series 987: 36–58, doi:10.1021/bk-2008-0987.ch004

    Google Scholar 

  158. Beg S, Swain S, Hasan H et al (2011) Systematic review of herbals as potential anti-inflammatory agents: recent advances, current clinical status and future perspectives. Pharmacogn Rev 5(10):120–137. doi:10.4103/0973-7847.91102

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Seger C, Godejohann M, Tseng L-H et al (2005) LC-DAD-MS/SPE-NMR hyphenation. A tool for the analysis of pharmaceutically used plant extracts: identification of Isobaric Irid Glycoside Regioisomers from Harpagophytum procumbens. Anal Chem 77(3):878–885. doi:10.1021/ac048772r

    CAS  PubMed  Google Scholar 

  160. Mahomed IM, Ojewole JA (2006) Anticonvulsant activity of Harpagophytum procumbens DC [Pedaliaceae] secondary root aqueous extract in mice. Brain Res Bull 69(1):57–62

    PubMed  Google Scholar 

  161. Kim Y, Park EJ, Kim J et al (2001) Neuroprotective constituents from Hedyotis diffusa. J Nat Prod 64(1):75–78. doi:10.1021/np000327d

    CAS  PubMed  Google Scholar 

  162. Lin J, Chen Y, Wei L, Chen X, Xu W, Hong Z, Sferra TJ, Peng J (2010) Hedyotis Diffusa Willd extract induces apoptosis via activation of the mitochondrion-dependent pathway in human colon carcinoma cells. Int J Oncol 37(5):1331–1338

    PubMed  Google Scholar 

  163. Kraus CM, Neszmélyi A, Holly S et al (1998) New acetylenes isolated from the bark of Heisteria acuminate. J Nat Prod 61(4):422–427. doi:10.1021/np970357p

    CAS  PubMed  Google Scholar 

  164. Ukiya M, Akihisa T, Tokuda H (2003) Isolation, structural elucidation, and inhibitory effects of terpenoid and lipid constituents from sunflower pollen on Epstein – Barr virus early antigen induced by tumor promoter, TPA. J Agric Food Chem 51(10):2949–2957. doi:10.1021/jf0211231

    CAS  PubMed  Google Scholar 

  165. Sala A, Recio M d C, Giner RM et al (2001) New acetophenone glucosides isolated from extracts of Helichrysum italicum with antiinflammatory activity. J Nat Prod 64(10):1360–1362. doi:10.1021/np010125x

    CAS  PubMed  Google Scholar 

  166. Sala A, Recio M, Giner RM, Máñez S, Tournier H, Schinella G, Ríos JL (2002) Anti-inflammatory and antioxidant properties of Helichrysum italicum. J Pharm Pharmacol 54(3):365–371

    CAS  PubMed  Google Scholar 

  167. Delgados G, del Socorro Olivares M, Chávez MI et al (2001) Antiinflammatory constituents from Heterotheca inuloides. J Nat Prod 64(7):861–864. doi:10.1021/np0005107

    Google Scholar 

  168. Coballase-Urrutia E, Pedraza-Chaverri J, Camacho-Carranza R (2010) Antioxidant activity of Heterotheca inuloides extracts and of some of its metabolites. Toxicology 276(1):41–48

    CAS  PubMed  Google Scholar 

  169. Monteiro R, Becker H, Azevedo I et al (2006) Effect of Hop (Humulus lupulus L.) flavonoids on aromatase (Estrogen Synthase) activity. J Agric Food Chem 54(8):2938–2943. doi:10.1021/jf053162t

    CAS  PubMed  Google Scholar 

  170. Zanoli P, Rivasi M, Zavatti M, Brusiani F, Baraldi M (2005) New insight in the neuropharmacological activity of Humulus lupulus L. J Ethnopharmacol 102(1):102–106

    CAS  PubMed  Google Scholar 

  171. Pettit GR, Meng Y, Stevenson CA et al (2003) Isolation and structure of palstatin from the Amazon tree Hymeneae palustris. J Nat Prod 66(2):259–262. doi:10.1021/np020231e

    CAS  PubMed  Google Scholar 

  172. Kim SH, Sung SH, Choi SY et al (2005) Idesolide: a new spiro compound from Idesia polycarpa. Org Lett 7(15):3275–3277. doi:10.1021/ol051105f

    CAS  PubMed  Google Scholar 

  173. Hwang JH, Moon SA, Lee CH et al (2012) Idesolide inhibits the adipogenic differentiation of mesenchymal cells through the suppression of nitric oxide production. Eur J Pharmacol 685(1–3):218–223

    CAS  PubMed  Google Scholar 

  174. Chou C-J, Lin L-C, Tsai W-J et al (1997) Phenyl β-d-glucopyranoside derivatives from the fruits of Idesia polycarpa. J Nat Prod 60(4):375–377. doi:10.1021/np960335n

    CAS  Google Scholar 

  175. Esmelindro ÂA, Girardi JDS, Mossi A et al (2004) Influence of agronomic variables on the composition of mate tea leaves (ilex paraguariensis) extracts obtained from CO2 extraction at 30 °C and 175 bar. J Agric Food Chem 52(7):1990–1995. doi:10.1021/jf035143u

    CAS  PubMed  Google Scholar 

  176. Burris KP, Davidson PM, Stewart CN et al (2011) Antimicrobial activity of Yerba Mate (Ilex paraguariensis) aqueous extracts against Escherichia coli O157:H7 and Staphylococcus aureus. J Food Sci 76(6):456–462. doi:10.1111/j.1750-3841.2011.02255.x

    Google Scholar 

  177. Abu Zarga MH, Hamed EM, Sabri SS et al (1998) New sesquiterpenoids from the Jordanian medicinal plant Inula viscose. J Nat Prod 61(6):798–800. doi:10.1021/np9701992

    CAS  PubMed  Google Scholar 

  178. Cafarchia C, De Laurentis N, Milillo MA et al (2002) Antifungal activity of essential oils from leaves and flowers of Inula viscosa (Asteraceae) by Apulian region. Parassitologia 44(3–4):153–156

    CAS  PubMed  Google Scholar 

  179. Hernández V, Del Recio M, Carmen MS et al (2001) A mechanistic approach to the in vivo anti-inflammatory activity of sesquiterpenoid compounds isolated from Inula viscosa. Planta Med 67(8):726–731

    PubMed  Google Scholar 

  180. Máñez S, Recio M d C, Gil I et al (1999) A glycosyl analogue of diacylglycerol and other antiinflammatory constituents from Inula viscose. J Nat Prod 62(4):601–604. doi:10.1021/np980132u

    PubMed  Google Scholar 

  181. Schinella GR, Tournier HA, Prieto JM et al (2002) Antioxidant activity of anti-inflammatory plant extracts. Life Sci 70(9):1023–1033

    CAS  PubMed  Google Scholar 

  182. León I, Mirón G, Alonso D (2006) Characterization of pentasaccharide glycosides from the roots of Ipomoea arborescens. J Nat Prod 69(6):896–902. doi:10.1021/np0600604

    PubMed  Google Scholar 

  183. Philpott M, Gould KS, Lim C et al (2004) In situ and in vitro antioxidant activity of sweetpotato anthocyanins. J Agric Food Chem 52(6):1511–1513. doi:10.1021/jf034593j

    CAS  PubMed  Google Scholar 

  184. Park KH, Kim JR, Lee JS, Lee H, Cho KH (2010) Ethanol and water extract of purple sweet potato exhibits anti-atherosclerotic activity and inhibits protein glycation. J Med Food 13(1):91–98

    CAS  PubMed  Google Scholar 

  185. Hou W-C, Chen Y-C, Chen H-J et al (2001) Antioxidant activities of trypsin inhibitor, a 33 KDa root storage protein of sweet potato (Ipomoea batatas (L.) Lam cv. Tainong 57). J Agric Food Chem 49(6):2978–2981

    CAS  PubMed  Google Scholar 

  186. Pereda-Miranda R, Escalante-Sánchez E, Escobedo-Martínez C (2005) Characterization of lipophilic pentasaccharides from beach morning glory (Ipomoea pes-caprae). J Nat Prod 68(2):226–230. doi:10.1021/np0496340

    CAS  PubMed  Google Scholar 

  187. Umamaheshwari G, Ramanathan T, Shanmugapriya R (2012) Antioxidant and radical scavenging effect of Ipomoea pes-caprae Linn. R.BR. Int J Pharm Tech Res 4(2):848–851

    Google Scholar 

  188. Silva DHS, Zhang Y, Santos LA et al (2005) Lipoperoxidation and cyclooxygenases 1 and 2 inhibitory compounds from Iryanthera juruensis. J Agric Food Chem 55(7):2569–2574. doi:10.1021/jf063451x

    Google Scholar 

  189. Silva DH, Pereira FC, Zanoni MV, Yoshida M (2001) Lipophyllic antioxidants from Iryanthera juruensis fruits. Phytochemistry 57(3):437–442

    CAS  PubMed  Google Scholar 

  190. Sheng MD, López A, Hillhouse BJ et al (2002) Bioactive constituents from Iryanthera megistophylla. J Nat Prod 65(10):1412–1416. doi:10.1021/np020169l

    Google Scholar 

  191. Ming DS, López A, Hillhouse BJ et al (2002) Bioactive constituents from Iryanthera megistophylla. J Nat Prod 65(10):1412–1416

    CAS  PubMed  Google Scholar 

  192. Jiang B, Yang H, Li M-L et al (2002) Diterpenoids from Isodon adenantha. J Nat Prod 65(8):1111–1116. doi:10.1021/np020084k

    CAS  PubMed  Google Scholar 

  193. Wang Y-H, Chen Y-Z, Kim D-S et al (1997) Two new ent-Kauranoids from Isodon excise. J Nat Prod 60(11):1161–1162. doi:10.1021/np970155t

    CAS  Google Scholar 

  194. Hou A-J, Li M-L, Jiang B et al (2000) New 7,20: 14,20-diepoxy ent-kauranoids from Isodon xerophilus. J Nat Prod 63(5):599–601. doi:10.1021/np9903705

    CAS  PubMed  Google Scholar 

  195. Hou AJ, Li ML, Jiang B, Lin ZW, Ji SY, Zhou YP, Sun HD (2000) New 7,20:14,20-diepoxy ent-kauranoids from Isodon xerophilus. J Nat Prod 63(5):599–601

    CAS  PubMed  Google Scholar 

  196. Zhang S, Zhao M, Bai L et al (2006) Bioactive guaianolides from siyekucai (Ixeris chinensis). J Nat Prod 69(10):1425–1428. doi:10.1021/np068015j

    CAS  PubMed  Google Scholar 

  197. Zhang S, Zhao M, Bai L et al (2006) Bioactive guaianolides from siyekucai (Ixeris chinensis). J Nat Prod 69(10):1425–1428

    CAS  PubMed  Google Scholar 

  198. Day S-H, Chiu N-Y, Tsao L-T et al (2000) New lignan glycosides with potent antiinflammatory effect, isolated from Justicia ciliate. J Nat Prod 63(11):1560–1562. doi:10.1021/np000191j

    CAS  PubMed  Google Scholar 

  199. Day SH, Chiu NY, Won SJ, Lin CN (1999) Cytotoxic lignans of Justicia ciliata. J Nat Prod 62(7):1056–1058

    CAS  PubMed  Google Scholar 

  200. CorrêaGeone M, Alcântara Antônio F. de C (2012) Chemical constituents and biological activities of species of Justicia – a review, Rev. bras. Farmacogn 22(1). doi:10.1590/S0102-695X2011005000196

    Google Scholar 

  201. Navarro E, Alonso SJ, Trujillo J et al (2001) General behavior, toxicity, and cytotoxic activity of elenoside, a lignan from Justicia hyssopifolia. J Nat Prod 64(1):134–135. doi:10.1021/np9904861

    CAS  PubMed  Google Scholar 

  202. Zhao Y, Yue J-M, He Y-N et al (1997) Eleven new eudesmane derivatives from Laggera pterodonta. J Nat Prod 60(6):545–549. doi:10.1021/np960456n

    CAS  Google Scholar 

  203. Liu YB, Jia W, Yao Z, Pan Q, Takaishi Y, Duan HQ (2007) Two eudesmane sesquiterpenes from Laggera pterodonta. J Asian Nat Prod Res 9(3–5):233–237

    CAS  PubMed  Google Scholar 

  204. Cioffi G, Sanogo R, Vassallo A et al (2006) Pregnane glycosides from Leptadenia pyrotechnica. J Nat Prod 69(4):625–635. doi:10.1021/np050493r

    CAS  PubMed  Google Scholar 

  205. Juliani HR, Wang M, Moharram H et.al (2006) Intraspecific variation in quality control parameters, polyphenol profile, and antioxidant activity in wild populations of Lippia multiflora from Ghana. In: Herbs: challenges in chemistry and biology, ACS symposium series 925, pp 126–142. doi:10.1021/bk-2006-0925.ch010

    Google Scholar 

  206. Hsu P-C, Huang Y-T, Tsai M-L et al (2004) Induction of apoptosis by shikonin through coordinative modulation of the Bcl-2 family, p27, and p53, release of cytochrome c, and sequential activation of caspases in human colorectal carcinoma cells. J Agric Food Chem 52(20):6330–6337. doi:10.1021/jf0495993

    CAS  PubMed  Google Scholar 

  207. Muhammad I, Li X-C, Jacob MR et al (2003) Antimicrobial and antiparasitic (+)-trans-Hexahydrodibenzopyrans and analogues from Machaerium multiflorum. J Nat Prod 66(6):804–809. doi:10.1021/np030045o

    CAS  PubMed  Google Scholar 

  208. Sindambiwe JB, Calomme M, Geerts S et al (1998) Evaluation of biological activities of triterpenoid saponins from Maesa lanceolata. J Nat Prod 61(5):585–590. doi:10.1021/np9705165

    CAS  PubMed  Google Scholar 

  209. Foubert K, Breynaert A, Theunis M et al (2012) Evaluation of the anti-angiogenic activity of saponins from Maesa lanceolata by different assays. Nat Prod Commun 7(9):1149–1154

    CAS  PubMed  Google Scholar 

  210. Huang P-L, Wang L-W, Lin C-N (1999) New triterpenoids of Mallotus repandus. J Nat Prod 62(6):891–892. doi:10.1021/np980374u

    CAS  PubMed  Google Scholar 

  211. Lin JM, Lin CC, Chen MF, Ujiie T, Takada A (1995) Scavenging effects of Mallotus repandus on active oxygen species. J Ethnopharmacol 46(3):175–181

    CAS  PubMed  Google Scholar 

  212. Somyote S, Jiraporn T, Somchai P et al (2001) D:A Friedo-oleanane Lactones from the Stems of Mallotus repandus. J Nat Prod 64(5):569–571. doi:10.1021/np0005560

    Google Scholar 

  213. Tazawa K, Ohkami H, Yamashita I, Ohnishi Y, Saito T, Okamoto M, Masuyama K, Yamazaki K, Takemori S, Saito M, Arai H (1998) Anticarcinogenic and/or Antimetastatic action of apple pectin in Experimental Rat Colon Carcinogenesis and on Hepatic Metastasis Rat Model, functional foods for disease prevention I. ACS Symp Ser 701:96–103. doi:10.1021/bk-1998-0701.ch009

    CAS  Google Scholar 

  214. Seeram NP, Cichewicz RH, Chandra A et al (2003) Cyclooxygenase inhibitory and antioxidant compounds from crabapple fruits. J Agric Food Chem 51(7):1948–1951. doi:10.1021/jf025993u

    CAS  PubMed  Google Scholar 

  215. Nakagawa H, Takaishi Y, Fujimoto Y et al (2004) Chemical constituents from the Colombian medicinal plant Maytenus laevis. J Nat Prod 67(11):1919–1924. doi:10.1021/np040006s

    CAS  PubMed  Google Scholar 

  216. Kim H-J, Chen F, Wu C et al (2004) Evaluation of antioxidant activity of Australian tea tree (Melaleuca alternifolia) oil and its components. J Agric Food Chem 52(10):2849–2854. doi:10.1021/jf035377d

    CAS  PubMed  Google Scholar 

  217. Hung C-Y, Yen G-C (2002) Antioxidant activity of phenolic compounds isolated from Mesona procumbens Hemsl. J Agric Food Chem 50(10):2993–2997. doi:10.1021/jf011454y

    CAS  PubMed  Google Scholar 

  218. Lai LS, Chou ST, Chao WW (2001) Studies on the antioxidative activities of Hsian-tsao (Mesona procumbens Hemsl) leaf gum. J Agric Food Chem 49(2):963–968

    CAS  PubMed  Google Scholar 

  219. Jin W, Zjawiony JK (2006) 5-Alkylresorcinols from Merulius incarnates. J Nat Prod 69(4):704–706. doi:10.1021/np050520d

    CAS  PubMed  Google Scholar 

  220. Zjawiony JK, Jin W, Vilgalys R (2005) Merulius incarnates Schwein., a rare mushroom with highly selective antimicrobial activity. Int J Med Mushrooms 7:365–366

    Google Scholar 

  221. Chen J-J, Chou T-H, Peng C-F et al (2007) Antitubercular Dihydroagarofuranoid Sesquiterpenes from the roots of Microtropis fokienensis. J Nat Prod 70(2):202–205. doi:10.1021/np060500r

    CAS  PubMed  Google Scholar 

  222. Chen I-H, Lu M-C, Du Y-C et al (2009) Cytotoxic triterpenoids from the stems of Microtropis japonica. J Nat Prod 72(7):1231–1236. doi:10.1021/np800694b

    CAS  PubMed  Google Scholar 

  223. Catalán CAN, Cuenca M d R, Hernández LR et al (2003) cis, cis-Germacranolides and Melampolides from Mikania thapsoides. J Nat Prod 66(7):949–953. doi:10.1021/np030055p

    PubMed  Google Scholar 

  224. Laurella LC, Frank FM, Sarquiz A, Alonso MR, Giberti G, Cavallaro L, Catalán CA, Cazorla SI, Malchiodi E, Martino VS, Sülsen VP (2012) In vitro evaluation of antiprotozoal and antiviral activities of extracts from Argentinean mikania species. Sci World J 2012:121253. doi:10.1100/2012/121253

    Google Scholar 

  225. Akihisa T, Tokuda H, Yasukawa K et al (2005) Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus-fermented rice (Red-mold rice) and their chemopreventive effects. J Agric Food Chem 53(3):562–565. doi:10.1021/jf040199p

    CAS  PubMed  Google Scholar 

  226. Chen CC, Chyau CC, Liao CC, Hu TJ, Kuo CF (2010) Enhanced anti-inflammatory activities of Monascus pilosus fermented products by addition of ginger to the medium. J Agric Food Chem 58(22):12006–12013

    CAS  PubMed  Google Scholar 

  227. Müller S, Murillo R, Castro V et al (2004) Sesquiterpene lactones from Montanoa hibiscifolia that inhibit the transcription factor NF-κB. J Nat Prod 67(4):622–630. doi:10.1021/np034072q

    PubMed  Google Scholar 

  228. Bagnarello G, Hilje L, Bagnarello V, Cartín V, Calvo M (2009) Phagodeterrent activity of the plants Tithonia diversifolia and Montanoa hibiscifolia (Asteraceae) on adults of the pest insect Bemisia tabaci (Homoptera: Aleyrodidae). Rev Biol Trop 57(4):1201–1215

    PubMed  Google Scholar 

  229. Yu H, Li S, Huang M-T et.al (2008) Antiinflammatory constituents in Noni (Morinda citrifolia) fruits, ACS symposium series, 987. doi:10.1021/bk-2008-0987.ch012

    Google Scholar 

  230. Gilani AH, Mandukhail S-u-R, Iqbal J et al (2010) Antispasmodic and vasodilator activities of Morinda citrifolia root extract are mediated through blockade of voltage dependent calcium channels. BMC Complement Altern Med 10:2. doi:10.1186/1472-6882-10-2

    PubMed Central  PubMed  Google Scholar 

  231. Bennett RN, Mellon FA, Foidl N et al (2003) Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (Horseradish tree) and Moringa stenopetala L. J Agric Food Chem 51(12):3546–3553. doi:10.1021/jf0211480

    CAS  PubMed  Google Scholar 

  232. Walter A, Samuel W, Peter A et al (2011) Antibacterial activity of Moringa oleifera and Moringa stenopetala methanol and n-hexane seed extracts on bacteria implicated in water borne diseases. Afr J Microbiol Res 5(2):153–157. doi:10.5897/AJMR10.457

    Google Scholar 

  233. Pawlowska AM, Oleszek W, Braca A (2008) Quali-quantitative analyses of Flavonoids of Morus nigra L. and Morus alba L. (Moraceae) fruits. J Agric Food Chem 56(9):3377–3380. doi:10.1021/jf703709r

    CAS  PubMed  Google Scholar 

  234. Wang L, Yang Y, Liu C, Chen RY (2010) Three new compounds from Morus nigra L. J Asian Nat Prod Res 12(6):431–437

    CAS  PubMed  Google Scholar 

  235. Ramsewak RS, Nair MG, Strasburg GM et al (1999) Biologically active carbazole alkaloids from Murraya koenigii. J Agric Food Chem 47(2):444–447. doi:10.1021/jf9805808

    CAS  PubMed  Google Scholar 

  236. Gupta BK, Tailang M, Lokhande AK et al (2011) Antimicrobial activity of ethanolic extracts of Murraya Koenigii by disc diffusion and broth dilution method. J Pharm Res 4(4):1023

    Google Scholar 

  237. Mathur A (2011) Antiinflammatory activity of leaves extracts of murraya koenigii L. Int J Pharma Bio Sci 2(1):541

    Google Scholar 

  238. Sawadjoon S, Kittakoop P, Kirtikara K et al (2002) Selective COX-2 inhibitors and antifungal agents from Myristica cinnamomea. J Org Chem 67(16):5470–5475. doi:10.1021/jo020045d

    CAS  PubMed  Google Scholar 

  239. Chong YM, Yin WF, Ho CY et al (2011) Malabaricone C from Myristica cinnamomea exhibits anti-quorum sensing activity. J Nat Prod 74(10):2261–2264

    CAS  PubMed  Google Scholar 

  240. Charan RD, Munro MHG, O’Keefe BR et al (2000) Isolation and characterization of Myrianthus holstii Lectin a Potent HIV-1 inhibitory protein from the plant Myrianthus holstii. J Nat Prod 63(8):1170–1174. doi:10.1021/np000039h

    CAS  PubMed  Google Scholar 

  241. Bi Y, Yang G, Li H et al (2006) Characterization of the chemical composition of lotus plumule oil. J Agric Food Chem 54(20):7672–7677. doi:10.1021/jf0607011

    CAS  PubMed  Google Scholar 

  242. Markin D, Duek L, Berdicevsky I (2003) In vitro antimicrobial activity of olive leaves. Mycoses 46(3–4):132–136

    CAS  PubMed  Google Scholar 

  243. Tabera J, Guinda Á, Rodríguez AR et al (2004) Countercurrent supercritical fluid extraction and fractionation of high-added-value compounds from a hexane extract of olive leaves. J Agric Food Chem 52(15):4774–4779. doi:10.1021/jf049881+

    CAS  PubMed  Google Scholar 

  244. Bayçın D, Altıok E, Ülkü S et al (2007) Adsorption of olive leaf (Olea europaea L.) antioxidants on silk fibroin. J Agric Food Chem 55(4):1227–1236. doi:10.1021/jf062829o

    PubMed  Google Scholar 

  245. Kırmızıgül S, Gören N, Yang S-W et al (1997) Spinonin, a novel glycoside from ononis spinosa subsp. Leiosperma. J Nat Prod 60(4):378–381. doi:10.1021/np9605652

    PubMed  Google Scholar 

  246. Altuner EM, Ceter T, Işlek C (2010) Investigation of antifungal activity of Ononis spinosa L. ash used for the therapy of skin infections as folk remedies. Mikrobiyol Bul 44(4):633–639

    CAS  PubMed  Google Scholar 

  247. Galati EM, Mondello MR, Giuffrida D et al (2003) Chemical characterization and biological effects of Sicilian Opuntia ficus indica (L.) mill. Fruit juice: antioxidant and antiulcerogenic activity. J Agric Food Chem 51(17):4903–4908. doi:10.1021/jf030123d

    CAS  PubMed  Google Scholar 

  248. Demirci F, Paper DH, Franz G et al (2004) Investigation of the Origanum onites L. essential oil using the Chorioallantoic Membrane (CAM) Assay. J Agric Food Chem 52(2):251–254. doi:10.1021/jf034850k

    CAS  PubMed  Google Scholar 

  249. Sarac N, Ugur A (2008) Antimicrobial activities of the essential oils of Origanum onites L., Origanum vulgare L. subspecies hirtum (Link) Ietswaart, Satureja thymbra L., and Thymus cilicicus Boiss. & Bal. growing wild in Turkey. J Med Food 11(3):568–573

    CAS  PubMed  Google Scholar 

  250. Tang Y, Yu B, Hu J et al (2002) Three new homoisoflavanone glycosides from the bulbs of Ornithogalum caudatum. J Nat Prod 65(2):218–220. doi:10.1021/np010466a

    CAS  PubMed  Google Scholar 

  251. Chen R, Meng F, Liu Z et al (2010) Antitumor activities of different fractions of polysaccharide purified from Ornithogalum caudatum Ait. Carbohydr Polym 80(3):845–851. doi:10.1016/j.carbpol. 12.042

    CAS  Google Scholar 

  252. Awale S, Tezuka Y, Banskota AH et al (2003) Nitric oxide inhibitory isopimarane-type diterpenes from Orthosiphon stamineus of Indonesia. J Nat Prod 66(2):255–258. doi:10.1021/np020455x

    CAS  PubMed  Google Scholar 

  253. Abdelwahab SI, Mohan S, Elhassan MM et.al (2011) Antiapoptotic and Antioxidant properties of Orthosiphon stamineus Benth (Cat’s Whiskers): intervention in the Bcl-2-Mediated Apoptotic Pathway. Evid Based Complement Alternat Med. 156765. doi:10.1155/2011/156765

    Google Scholar 

  254. Lin H-C, Ding H-Y, Wu Y-C (1998) Two novel compounds from Paeonia suffruticosa. J Nat Prod 61(3):343–346. doi:10.1021/np9704258

    CAS  PubMed  Google Scholar 

  255. Tak JH, Kim HK, Lee SH et al (2006) Acaricidal activities of paeonol and benzoic acid from Paeonia suffruticosa root bark and monoterpenoids against Tyrophagus putrescentiae (Acari: Acaridae). Pest Manag Sci 62(6):551–557

    CAS  PubMed  Google Scholar 

  256. Noh IC, Cho WD, Sandesh S et al (2012) Anti-inflammatory and immunosuppressive activity of mixture of Trachelospermum asiaticum and Paeonia suffruticosa extracts (novel herbal formula SI000902). J Med Plant Res 6(25):4247–4254. doi:10.5897/JMPR12.509

    Google Scholar 

  257. Kang KS, Yokozawa T, Kim HY et al (2006) Study on the nitric oxide scavenging effects of ginseng and its compounds. J Agric Food Chem 54(7):2558–2562. doi:10.1021/jf0529520

    CAS  PubMed  Google Scholar 

  258. Ramesh T, Kim SW, Sung JH, Hwang SY, Sohn SH, Yoo SK, Kim SK (2011) Effect of fermented Panax ginseng extract (GINST) on oxidative stress and antioxidant activities in major organs of aged rats. Exp Gerontol 47(1):77–84

    PubMed  Google Scholar 

  259. Zou K, Zhu S, Tohda C et al (2002) Dammarane-type triterpene saponins from Panax japonicas. J Nat Prod 65(3):346–351. doi:10.1021/np010354j

    CAS  PubMed  Google Scholar 

  260. Chan H-H, Hwang T-L, Sun H-D et al (2011) Bioactive constituents from the roots of Panax japonicus var. MAJOR and development of a LC-MS/MS method for distinguishing between natural and artifactual compounds. J Nat Prod 74(4):796–802. doi:10.1021/np100851s

    CAS  PubMed Central  PubMed  Google Scholar 

  261. Peng Y, Ye J, Kong J (2005) Determination of phenolic compounds in Perilla frutescens L. by capillary electrophoresis with electrochemical detection. J Agric Food Chem 53(21):8141–8147. doi:10.1021/jf051360e

    CAS  PubMed  Google Scholar 

  262. Meng L, Lozano YF, Gaydou EM et al (2009) Antioxidant activities of polyphenols extracted from Perilla frutescens varieties. Molecules 14:133–140. doi:10.3390/molecules14010133

    CAS  Google Scholar 

  263. Saita E, Kishimoto Y, Tani M et al (2012) Antioxidant activities of Perilla frutescens against low-density lipoprotein oxidation in vitro and in human subjects. J Oleo Sci 61(3):113–120

    CAS  PubMed  Google Scholar 

  264. Kang R, Helms R, Stout MJ et al (1992) Antimicrobial activity of the volatile constituents of Perilla frutescens and its synergistic effects with polygodial. J Agric Food Chem 40(11):2328–2330. doi:10.1021/jf00023a054

    CAS  Google Scholar 

  265. Vogl S, Zehl M, Picker P et al (2011) Identification and quantification of coumarins in Peucedanum ostruthium (L.) Koch by HPLC-DAD and HPLC-DAD-MS. J Agric Food Chem 59(9):4371–4377. doi:10.1021/jf104772x

    CAS  PubMed  Google Scholar 

  266. Hiermann A, Schantl D (1998) Antiphlogistic and antipyretic activity of Peucedanum ostruthium. Planta Med 64(5):400–403

    CAS  PubMed  Google Scholar 

  267. Ahmad S, Malik A, Afza N et al (1999) New withanolide glycoside from Physalis peruviana. J Nat Prod 62(3):493–494. doi:10.1021/np980228o

    CAS  PubMed  Google Scholar 

  268. Wu SJ, Ng LT, Huang YM et al (2005) Antioxidant activities of Physalis peruviana. Biol Pharm Bull 28(6):963–966

    CAS  PubMed  Google Scholar 

  269. Zhang Y-J, Tanaka T, Iwamoto Y, Yang C-R, Kouno I (2001) Novel sesquiterpenoids from the roots of Phyllanthus emblica. J Nat Prod 64(7):870–873. doi:10.1021/np010059z

    CAS  PubMed  Google Scholar 

  270. Bandyopadhyay SK, Pakrashi SC, Pakrashi A (2000) The role of antioxidant activity of Phyllanthus emblica fruits on prevention from indomethacin induced gastric ulcer. J Ethnopharmacol 70(2):171–176

    CAS  PubMed  Google Scholar 

  271. Jia Q, Hong M-F, Minter PD (1992) A novel irid from Picrorhiza kurro. J Nat Prod 62(6):901–903. doi:10.1021/np980493

    Google Scholar 

  272. Rajkumar V, Guha G, Kumar RA (2011) Antioxidant and anti-neoplastic activities of Picrorhiza kurroa extracts. Food Chem Toxicol 49(2):363–369. doi:10.1016/j.fct.2010.11.009

    CAS  PubMed  Google Scholar 

  273. Smit HF, Kroes BH, van den Berg AJ, van der Wal D, van den Worm E, Beukelman CJ, van Dijk H, Labadie RP (2000) Immunomodulatory and anti-inflammatory activity of Picrorhiza scrophulariiflora. J Ethnopharmacol 73(1–2):101–109

    CAS  PubMed  Google Scholar 

  274. Smit HF, van den Berg AJJ, Kroes BH (2000) Inhibition of T-lymphocyte proliferation by cucurbitacins from Picrorhiza scrophulariaeflora. J Nat Prod 63(9):1300–1302. doi:10.1021/np990215q

    CAS  PubMed  Google Scholar 

  275. Grassmann J, Hippeli S, Vollmann R et al (2003) Antioxidative properties of the essential oil from Pinus mugo. J Agric Food Chem 51(26):7576–7582. doi:10.1021/jf030496e

    CAS  PubMed  Google Scholar 

  276. Wei K, Li W, Koike K (2005) Nigramides A-S, dimeric amide alkaloids from the roots of Piper nigrum. J Org Chem 70(4):1164–1176. doi:10.1021/jo040272a

    CAS  PubMed  Google Scholar 

  277. Park IK, Lee SG, Shin SC (2002) Larvicidal activity of isobutylamides identified in Piper nigrum fruits against three mosquito species. J Agric Food Chem 50(7):1866–1870

    CAS  PubMed  Google Scholar 

  278. Alma MH, Nitz S, Kollmannsberger H (2004) Chemical composition and antimicrobial activity of the essential oils from the gum of Turkish pistachio (Pistacia vera L.). J Agric Food Chem 52(12):3911–3914. doi:10.1021/jf040014e

    CAS  PubMed  Google Scholar 

  279. Chiang LC, Chiang W, Chang MY et al (2002) Antiviral activity of Plantago major extracts and related compounds in vitro. Antivir Res 55(1):53–62

    CAS  PubMed  Google Scholar 

  280. Vastano C, Rafi MM, DiPaola RS et al (2001) Bioactive homoisoflavones from Vietnamese Coriander or Pak Pai (Polygonatum odoratum). In: Quality management of nutraceuticals, ACS symposium series, 803, pp 269–280. doi:10.1021/bk-2002-0803.ch019

    Google Scholar 

  281. Wang D, Zeng L, Li D et al (2013) Antioxidant activities of different extracts and homo isoflavanones isolated from the Polygonatum odoratum. Nat Prod Res 27(12):1111–1114. doi:10.1080/14786419.2012.701212

    CAS  PubMed  Google Scholar 

  282. Sang S, Lapsley K, Rosen RT et al (2002) New prenylated benzoic acid and other constituents from almond hulls (Prunus amygdalus Batsch). J Agric Food Chem 50(3):607–609. doi:10.1021/jf0110194

    CAS  PubMed  Google Scholar 

  283. Wang H, Nair MG, Strasburg GM et al (2003) Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J Nat Prod 62(2):294–296. doi:10.1021/np980501m

    Google Scholar 

  284. Takeoka GR, Dao LT (2003) Antioxidant constituents of almond [Prunus dulcis (Mill.) D.A. Webb] hulls. J Agric Food Chem 51(2):496–501. doi:10.1021/jf020660i

    CAS  PubMed  Google Scholar 

  285. Hamauzu Y, Kume C, Yasui H et al (2007) Reddish coloration of Chinese quince (Pseudocydonia sinensis) procyanidins during heat treatment and effect on antioxidant and antiinfluenza viral activities. J Agric Food Chem 55(4):1221–1226. doi:10.1021/jf061836+

    CAS  PubMed  Google Scholar 

  286. Demuner AJ, Barbosa LCdA, Howarth OW (1996) Structure and plant growth regulatory activity of new diterpenes from Pterodon polygalaeflorus. J Nat Prod 59(8):770–772. doi:10.1021/np960140f

    CAS  Google Scholar 

  287. De Omena MC, Bento ES, De Paula JE et al (2006) Larvicidal diterpenes from Pterodon polygalaeflorus. Vector Borne Zoonotic Dis 6(2):216–222. doi:10.1089/vbz.2006.6.216

    PubMed  Google Scholar 

  288. Lee H-S (2002) Tyrosinase inhibitors of Pulsatilla cernua root-derived materials. J Agric Food Chem 50(6):1400–1403. doi:10.1021/jf011230f

    CAS  PubMed  Google Scholar 

  289. Lee HS, Beon MS, Kim MK (2001) Selective growth inhibitor toward human intestinal bacteria derived from Pulsatilla cernua root. J Agric Food Chem 49(10):4656–4661

    CAS  PubMed  Google Scholar 

  290. Dell’Agli M, Galli GV, Corbett Y et al (2009) Antiplasmodial activity of Punica granatum L. fruit rind. J Ethnopharmacol 125(2):279–285

    PubMed  Google Scholar 

  291. Ahmed S, Wang N, Hafeez BB et al (2005) Punica granatum L. extract inhibits IL-1β–induced expression of matrix metalloproteinases by inhibiting the activation of MAP kinases and NF-κB in human chondrocytes in vitro. J Nutr 135(9):2096–2102

    CAS  PubMed Central  PubMed  Google Scholar 

  292. Krenn L, Presser A, Pradhan R et al (2003) Sulfemodin 8-O-β-d-glucoside, a new sulfated anthraquinone glycoside, and antioxidant phenolic compounds from Rheum emodi. J Nat Prod 66(8):1107–1109. doi:10.1021/np0301442

    CAS  PubMed  Google Scholar 

  293. Iwata N, Wang N, Yao X et al (2004) Structures and histamine release inhibitory effects of prenylated orcinol derivatives from Rhododendron dauricum. J Nat Prod 67(7):1106–1109. doi:10.1021/np0303916

    CAS  PubMed  Google Scholar 

  294. Goffman FD, Galletti S (2001) Gamma-linolenic acid and tocopherol contents in the seed oil of 47 accessions from several ribes species. J Agric Food Chem 49(1):349–354. doi:10.1021/jf0006729

    CAS  PubMed  Google Scholar 

  295. Knox YM, Suzutani T, Yosida I et al (2003) Anti-influenza virus activity of crude extract of Ribes nigrum L. Phytother Res 17(2):120–122

    PubMed  Google Scholar 

  296. Larsen E, Kharazmi A, Christensen LP et al (2003) An antiinflammatory galactolipid from rose hip (Rosa canina) that inhibits chemotaxis of human peripheral blood neutrophils in vitro. J Nat Prod 66(7):994–995. doi:10.1021/np0300636

    CAS  PubMed  Google Scholar 

  297. Kilicgun H, Altiner D (2010) Correlation between antioxidant effect mechanisms and polyphenol content of Rosa canina. Pharmacognosy Res 6(23):238–241. doi:10.4103/0973-1296.66943

    CAS  Google Scholar 

  298. Lattanzio F, Greco E, Carretta D et al (2011) In vivo anti-inflammatory effect of Rosa canina L. extract. J Ethnapharmacol 137(1):880–885

    Google Scholar 

  299. Kirkeskov B, Christensen R, Bügel S et al (2011) The effects of rose hip (Rosa canina) on plasma antioxidative activity and C-reactive protein in patients with rheumatoid arthritis and normal controls: a prospective cohort study. Phytomedicine 18(11):953–958

    CAS  PubMed  Google Scholar 

  300. Altinier LG, Sosa S, Aquino RP et al (2007) Characterization of topical antiinflammatory compounds in Rosmarinus officinalis. J Agric Food Chem 55(5):1718–1723. doi:10.1021/jf062610

    CAS  PubMed  Google Scholar 

  301. Ventura-Martínez R, Rivero-Osorno O, Gómez C et al (2011) Spasmolytic activity of Rosmarinus officinalis L. involves calcium channels in the guinea pig ileum. J Ethnopharmacol 137(3):1528–1532

    PubMed  Google Scholar 

  302. Naito Y, Oka S, Yoshikawa T (2003) Inflammatory response in the Pathogenesis of Atherosclerosis and its prevention by Rosmarinic Acid, a functional ingredient of Rosemary. In: Food factors in health promotion and disease prevention, ACS symposium series, 851, pp 208–221. doi:10.1021/bk-2003-0851.ch018

    Google Scholar 

  303. Wang B-G, Zhu W-M, Li X-M et al (2000) Rubupungenosides A and B, two novel triterpenoid saponin dimers from the aerial parts of Rubus pungens. J Nat Prod 63(6):851–854. doi:10.1021/np990473n

    CAS  PubMed  Google Scholar 

  304. Wada L, Ou B (2002) Antioxidant activity and phenolic content of Oregon Caneberries. J Agric Food Chem 50(12):3495–3500. doi:10.1021/jf011405l

    CAS  PubMed  Google Scholar 

  305. Bushman BS, Phillips B, Isbell T et al (2004) Chemical composition of Caneberry (Rubus spp.) seeds and oils and their antioxidant potential. J Agric Food Chem 52(26):7982–7987. doi:10.1021/jf049149a

    CAS  PubMed  Google Scholar 

  306. Longo L, Vasapollo G (2005) Determination of anthocyanins in Ruscus aculeatus L. Berries. J Agric Food Chem 53(2):475–479. doi:10.1021/jf0487250

    CAS  PubMed  Google Scholar 

  307. Facino RM, Carini M, Stefani R et al (2006) Anti-Elastase and Anti-Hyaluronidase activities of saponins and sapogenins from Hedera helix, Aesculus hippocastanum, and Ruscus aculeatus: factors contributing to their efficacy in the treatment of venous insufficiency. Arch Pharm 328(10):720–724. doi:10.1002/ardp.19953281006

    Google Scholar 

  308. Chen X-H, Xia L-X, Hong-Bo H-B et al (2010) Chemical composition and antioxidant activities of Russula griseocarnosa sp. nov. J Agric Food Chem 58(11):6966–6971. doi:10.1021/jf1011775

    CAS  PubMed  Google Scholar 

  309. Morikawa T, Kishi A, Pongpiriyadacha Y et al (2003) Structures of new friedelane-type triterpenes and eudesmane-type sesquiterpene and aldose reductase inhibitors from Salacia chinensis. J Nat Prod 66(9):1191–1196. doi:10.1021/np0301543

    CAS  PubMed  Google Scholar 

  310. Sikarwar MS, Patil MB (2012) Antihyperlipidemic activity of Salacia chinensis root extracts in triton-induced and atherogenic diet-induced hyperlipidemic rats. Indian J Pharm 44(1):88–92

    Google Scholar 

  311. Fraga BM, Daz CE, Guadao A et al (2005) Diterpenes from Salvia broussonetii transformed roots and their insecticidal activity. J Agric Food Chem 53(13):5200–5206. doi:10.1021/jf058045c

    CAS  PubMed  Google Scholar 

  312. Santos-Gomes PC, Fernandes-Ferreira M (2003) Essential oils produced by in vitro shoots of sage (Salvia officinalis L.). J Agric Food Chem 51(8):2260–2266. doi:10.1021/jf020945v

    CAS  PubMed  Google Scholar 

  313. Bouajaj S, Benyamna A, Bouamama H et al (2012) Antibacterial, allelopathic and antioxidant activities of essential oil of Salvia officinalis L. growing wild in the Atlas Mountains of Morocco. Nat Prod Res 27(18):1673–1676. doi:10.1080/14786419.2012.751600

    PubMed  Google Scholar 

  314. Don M-J, Shen C-C, Lin Y-L et al (2005) Nitrogen-containing compounds from Salvia miltiorrhiza. J Nat Prod 68(7):1066–1070. doi:10.1021/np0500934

    CAS  PubMed  Google Scholar 

  315. Zhao G-R, Xiang Z-J, Ye T-X et al (2006) Antioxidant activities of Salvia miltiorrhiza and Panax notoginseng. Food Chem 99(4):767–774

    CAS  Google Scholar 

  316. Pan Z-H, Wang Y-Y, Li M-M et al (2010) Terpenoids from Salvia trijuga. J Nat Prod 73(6):1146–1150. doi:10.1021/np100250w

    CAS  PubMed  Google Scholar 

  317. Fattorusso E, Santelia FU, Appendino G et al (2004) Polyoxygenated eudesmanes and trans-chrysanthemanes from the aerial parts of Santolina insularis. J Nat Prod 67(1):37–41. doi:10.1021/np030222l

    CAS  PubMed  Google Scholar 

  318. Valenti D, De Logu A, Loy G et al (2001) Liposome-incorporated santolina insularis essential oil: preparation, characterization and in vitro antiviral activity. J Liposome Res 11(1):73–90. doi:10.1081/LPR-100103171

    CAS  PubMed  Google Scholar 

  319. Silván AM, Abad MJ, Bermejo P et al (1996) Antiinflammatory activity of coumarins from Santolina oblongifolia. J Nat Prod 59(12):1183–1185. doi:10.1021/np960422f

    PubMed  Google Scholar 

  320. Ogundaini A, Farah M, Perera P et al (1996) Isolation of two new antiinflammatory biflavanoids from Sarcophyte piriei. J Nat Prod 59(6):587–590. doi:10.1021/np960386k

    CAS  PubMed  Google Scholar 

  321. Selenski C, Pettus TRR (2006) (±)-Diinsininone: made nature’s way. Tetrahedron 62:5298–5307

    CAS  PubMed Central  PubMed  Google Scholar 

  322. Chorianopoulos N, Evergetis E, Mallouchos A et al (2006) Characterization of the essential oil volatiles of Satureja thymbra and Satureja parnassica: influence of harvesting time and antimicrobial activity. J Agric Food Chem 54(8):3139–3145. doi:10.1021/jf053183n

    CAS  PubMed  Google Scholar 

  323. Sun C-M, Syu W-J, Don M-J et al (2003) Cytotoxic sesquiterpene lactones from the root of Saussurea lappa. J Nat Prod 66(9):1175–1180. doi:10.1021/np030147e

    CAS  PubMed  Google Scholar 

  324. Gokhale AB, Damre AS, Kulkami KR et al (2002) Preliminary evaluation of anti-inflammatory and anti-arthritic activity of S. lappa, A. speciosa and A. aspera. Phytomedicine 9(5):433–437

    CAS  PubMed  Google Scholar 

  325. Heo HJ, Kim D-O, Choi SJ et al (2004) Potent inhibitory effect of flavonoids in Scutellaria baicalensis on amyloid β protein-induced neurotoxicity. J Agric Food Chem 52(13):4128–4132. doi:10.1021/jf049953x

    CAS  PubMed  Google Scholar 

  326. Joshee N, Tascan A, Medina-Bolivar F et al (2013) Scutellaria: biotechnology, phytochemistry and its potential as a commercial medicinal crop. In: Chandra S et al (eds) Micropropagation and improvement. Springer, Heidelberg, pp 69–99

    Google Scholar 

  327. Ye F, Xui L, Yi J, Zhang W, Zhang DY (2002) Anticancer activity of Scutellaria baicalensis and its potential mechanism. J Altern Complement Med 8(5):567–572

    PubMed  Google Scholar 

  328. Šentjurc M, Nemec M, Connor HD et al (2003) Antioxidant activity of Sempervivum tectorum and its components. J Agric Food Chem 51(9):2766–2771. doi:10.1021/jf026029z

    PubMed  Google Scholar 

  329. Panzella L, Eidenberger T, Napolitano A et al (2012) Black sesame pigment: DPPH assay-guided purification, antioxidant/antinitrosating properties and identification of a degradative structural marker. J Agric Food Chem 60(36):8895–8901. doi:10.1021/jf2053096

    CAS  PubMed  Google Scholar 

  330. Sautour M, Miyamoto T, Lacaille-Dubois M-A (2005) Steroidal saponins from Smilax medica and their antifungal activity. J Nat Prod 68(10):1489–1493. doi:10.1021/np058060b

    CAS  PubMed  Google Scholar 

  331. Howard LR, Pandjaitan N, Morelock T, Gil MI (2002) Antioxidant capacity and phenolic content of spinach as affected by genetics and growing season. J Agric Food Chem 50(21):5891–5896. doi:10.1021/jf020507o

    CAS  PubMed  Google Scholar 

  332. Kumar US, Tiwari AK, Reddy SV et al (2005) Free-radical-scavenging and xanthine oxidase inhibitory constituents from Stereospermum personatum. J Nat Prod 68(11):1615–1621. doi:10.1021/np058036y

    CAS  PubMed  Google Scholar 

  333. Barthomeuf CM, Debiton E, Barbakadze VV et al (2001) Evaluation of the dietetic and therapeutic potential of a high molecular weight hydroxycinnamate-derived polymer from symphytum asperum lepech. Regarding its antioxidant, antilipoperoxidan, antiinflammatory, and cytotoxic properties. J Agric Food Chem 49(8):3942–3946. doi:10.1021/jf010189d

    CAS  PubMed  Google Scholar 

  334. Barbakadze V, Kemertelidze E, Targamadze I et al (2005) Poly [3-(3,4-dihydroxyphenyl)glyceric acid], a new biologically active polymer from symphytum asperum lepech. and S. Caucasicum Bieb. (boraginaceae). Molecules 10:1135–1144

    CAS  PubMed  Google Scholar 

  335. Park B-S, Kim J-R, Lee S-E, Kim KS et al (2005) Selective growth-inhibiting effects of compounds identified in Tabebuia impetiginosa inner bark on human intestinal bacteria. J Agric Food Chem 53(4):1152–1157. doi:10.1021/jf0486038

    CAS  PubMed  Google Scholar 

  336. Park BS, Lee HK, Lee SE, Piao XL, Takeoka GR, Wong RY, Ahn YJ, Kim JH (2006) Antibacterial activity of Tabebuia impetiginosa Martius ex DC (Taheebo) against Helicobacter pylori. J Ethanophramacol 105(1–2):255–262

    CAS  Google Scholar 

  337. Xiang W, Li R-T, Mao Y-L et al (2005) Four new prenylated isoflavonoids in Tadehagi triquetrum. J Agric Food Chem 53(2):267–271. doi:10.1021/jf0483117

    CAS  PubMed  Google Scholar 

  338. Céspedes CL, Avila JG, Martínez A et al (2006) Antifungal and antibacterial activities of Mexican Tarragon (Tagetes lucida). J Agric Food Chem 54(10):3521–3527. doi:10.1021/jf053071w

    PubMed  Google Scholar 

  339. Martinez J, Silván AM, Abad MJ et al (1997) Isolation of two flavonoids from Tanacetum microphyllum as PMA-induced ear edema inhibitors. J Nat Prod 60(2):142–144. doi:10.1021/np960163u

    CAS  PubMed  Google Scholar 

  340. Abad MJ, Bermejo P, Villar A, Valverde S (1993) Anti-inflammatory activity of two flavonoids from Tanacetum microphyllum. J Nat Prod 56(7):1164–1167

    CAS  PubMed  Google Scholar 

  341. Abad MJ, Bermejo PA (1991) Antiinflammatory and anti-ulcerogenic activities of the organic extracts of Tanacetum microphyllum DC in rats. Villar Phytother Res 5(4):179–181. doi:10.1002/ptr.2650050409

    Google Scholar 

  342. Ndubuisil MKI, Kwok BHB, Vervoort J et al (2002) Characterization of a novel mammalian phosphatase having sequence similarity to schizosaccharomyces pombe PHO2 and Saccharomyces cerevisiae PHO13. Biochemistry 41(24):7841–7848. doi:10.1021/bi0255064

    CAS  PubMed Central  PubMed  Google Scholar 

  343. Majdi M, Liu Q, Karimzadeh G, Malboobi MA, Beekwilder J, Cankar K, Vos R, Todorović S, Simonović A, Bouwmeester H (2011) Biosynthesis and localization of parthenolide in glandular trichomes of feverfew (Tanacetum parthenium L. Schulz Bip.). Phytochemistry 72(14–15):1739–1750

    CAS  PubMed  Google Scholar 

  344. Lesiak K, Koprowska K, Zalesna I, Nejc D, Düchler M, Czyz M (2010) Parthenolide, a sesquiterpene lactone from the medical herb feverfew, shows anticancer activity against human melanoma cells in vitro. Melanoma Res 20(1):21–34

    CAS  PubMed  Google Scholar 

  345. Barrero AF, Quílez del Moral JF, Lucas R et al (2003) Diterpenoids from Tetraclinis articulata that inhibit various human leukocyte functions. J Nat Prod 66(6):844–850. doi:10.1021/np0204949

    CAS  PubMed  Google Scholar 

  346. Djouahri A, Boudarene L, Meklati BY (2013) Effect of extraction method on chemical composition, antioxidant and anti-inflammatory activities of essential oil from the leaves of Algerian Tetraclinis articulata (Vahl) masters. Ind Crop Prod 44:32–36

    CAS  Google Scholar 

  347. Ghosal S, Vishwakarma RA (1997) Tinocordiside, a new rearranged cadinane sesquiterpene glycoside from Tinospora cordifolia. J Nat Prod 60(8):839–841. doi:10.1021/np970169z

    CAS  Google Scholar 

  348. Stanely P, Prince M, Menon VP (2000) Hypoglycaemic and other related actions of Tinospora cordifolia roots in alloxan-induced diabetic rats. J Ethnopharmacol 70:9–15. doi:10.1016/S0378-8741(98)00164-0

    CAS  PubMed  Google Scholar 

  349. Desai VR, Kamat JP, Sainis KB (2002) An immunomodulator from Tinospora cordifolia with antioxidant activity in cell-free systems. Proc Indian Acad Sci 114(6):713–719

    CAS  Google Scholar 

  350. Lin Y-L, Tsai Y-L, Kuo Y-H et al (1999) Phenolic compounds from Tournefortia sarmentosa. J Nat Prod 62(11):1500–1503. doi:10.1021/np9901332

    CAS  PubMed  Google Scholar 

  351. Lin YL, Chang YY, Kuo YH, Shiao MS (2002) Anti-lipid-peroxidative principles from Tournefortia sarmentosa. J Nat Prod 65(5):745–747

    CAS  PubMed  Google Scholar 

  352. Miyazawa M, Okuno Y, Imanishi K (2005) Suppression of the SOS-inducing activity of mutagenic heterocyclic amine, Trp-P-1, by triterpenoid from Uncaria sinensis in the Salmonella typhimurium TA1535/pSK1002 Umu test. J Agric Food Chem 53(6):2312–2315. doi:10.1021/jf035430y

    CAS  PubMed  Google Scholar 

  353. Park SH, Kim JH, Park SJ, Bae SS, Choi YW, Hong JW, Choi BT, Shin HK (2011) Protective effect of hexane extracts of Uncaria sinensis against photothrombotic ischemic injury in mice. J Ethnopharmacol 138(3):774–779. doi:10.1016/j.jep.2011.10.026

    PubMed  Google Scholar 

  354. Neto CC (2011) Ursolic acid and other pentacyclic triterpenoids: Anticancer activities and occurrence in berries. In: Stoner GD, Seeram NP (eds) Berries and cancer prevention. Springer Science+Business Media, LLC, New York. doi:10.1007/978-1-4419-7554-6

    Google Scholar 

  355. Kitajima M, Hashimoto K-i, Yokoya M et al (2003) Two new nor-triterpene glycosides from Peruvian Uña de Gato (Uncaria tomentosa). J Nat Prod 66(2):320–323. doi:10.1021/np0203741

    CAS  PubMed  Google Scholar 

  356. Pilarski R, Poczekaj-Kostrzewska M, Ciesiołka D et al (2007) Antiproliferative activity of various Uncaria tomentosa preparations on HL-60 promyelocytic leukemia cells. Pharmacol Rep 59(5):565–572

    CAS  PubMed  Google Scholar 

  357. Ayaz FA, Hayirlioglu-Ayaz S, Gruz J et al (2005) Separation, characterization, and quantitation of phenolic acids in a little-known blueberry (Vaccinium arctostaphylos L.) fruit by HPLC-MS. J Agric Food Chem 53(21):8116–8122. doi:10.1021/jf058057y

    CAS  PubMed  Google Scholar 

  358. Su Z (2012) Anthocyanins and flavonoids of vaccinium L. Pharm Crops 3:7–37

    CAS  Google Scholar 

  359. Dulebohn RV, Yi W, Srivastava A et al (2008) Effects of blueberry (Vaccinium ashei) on DNA damage, lipid peroxidation, and phase II enzyme activities in rats. J Agric Food Chem 56(24):11700–11706. doi:10.1021/jf802405y

    CAS  PubMed  Google Scholar 

  360. Li C, Feng J, Huang WY, An XT (2013) Composition of polyphenols and antioxidant activity of rabbiteye blueberry (Vaccinium ashei) in Nanjing. J Agric Food Chem 61(3):523–531. doi:10.1021/jf3046158

    CAS  PubMed  Google Scholar 

  361. Dao CA, Patel KD, Neto CC (2012) Phytochemicals from the fruit and foliage of Cranberry (Vaccinium macrocarpon) – potential benefits for human health. In: Emerging trends in dietary components for preventing and combating disease, ACS symposium series, 1093, pp 79–94. doi:10.1021/bk-2012-1093.ch005

    Google Scholar 

  362. Yan X, Murphy BT, Hammond GB, Vinson JA, Neto CC (2002) Antioxidant activities and antitumor screening of extracts from cranberry fruit (Vaccinium macrocarpon). J Agric Food Chem 50(21):5844–5849

    CAS  PubMed  Google Scholar 

  363. Murphy BT, MacKinnon SL, Yan X et al (2003) Identification of triterpene hydroxycinnamates with in vitro antitumor activity from whole cranberry fruit (Vaccinium macrocarpon). J Agric Food Chem 51(12):3541–3545. doi:10.1021/jf034114g

    CAS  PubMed  Google Scholar 

  364. Bao L, Yao X-S, Tsi D et al (2008) Protective effects of bilberry (Vaccinium myrtillus L.) extract on KBrO3-induced kidney damage in mice. J Agric Food Chem 56(2):420–425. doi:10.1021/jf072640s

    CAS  PubMed  Google Scholar 

  365. Szakie A, Pączkowski C, Koivuniemi H et al (2012) Comparison of the triterpenoid content of berries and leaves of lingonberry vaccinium vitis-idaea from Finland and Poland. J Agric Food Chem 60(19):4994–5002. doi:10.1021/jf300375b

    Google Scholar 

  366. Ho KY, Tsai CC, Huang JS, Chen CP, Lin TC, Lin CC (2001) Antimicrobial activity of tannin components from Vaccinium vitis-idaea L. J Pharm Pharmacol 53(2):187–191

    CAS  PubMed  Google Scholar 

  367. Kylli P, Nohynek L, Puupponen-Pimia R et al (2011) Lingonberry (Vaccinium vitis-idaea) and European Cranberry (Vaccinium microcarpon) proanthocyanidins: isolation, identification, and bioactivities. J Agric Food Chem 59(7):3373–3384. doi:10.1021/jf104621e

    CAS  PubMed  Google Scholar 

  368. de Andrade IL, Bezerra JNS, Lima MAA et al (2004) Chemical composition and insecticidal activity of essential oils from Vanillosmopsis pohlii Baker against Bemisia argentifolii. J Agric Food Chem 52(19):5879–5881. doi:10.1021/jf049788l

    PubMed  Google Scholar 

  369. Zgoda-Pols JR, Freyer AJ, Killme LB, Porter JR (2002) Antimicrobial resveratrol tetramers from the stem bark of Vatica oblongifolia ssp. Oblongifolia. J Nat Prod 65(11):1554–1559. doi:10.1021/np020198w

    CAS  PubMed  Google Scholar 

  370. Zgoda-Pols JR, Freyer AJ, Killmer LB, Porter JR (2002) Antimicrobial resveratrol tetramers from the stem bark of Vatica oblongifoliassp. oblongifolia. J Nat Prod 65(11):1554–1559

    CAS  PubMed  Google Scholar 

  371. Hernández-Pérez M, Hernández T, Gómez-Cordovés C et al (1996) Phenolic composition of the “Mocán” (Visnea mocanera L.f.). J Agric Food Chem 44(11):3512–3515. doi:10.1021/jf9505335

    Google Scholar 

  372. Castillo J, Benavente-García O, Lorente J et al (2000) Antioxidant activity and radioprotective effects against chromosomal damage induced in vivo by X-rays of flavan-3-ols (Procyanidins) from grape seeds (Vitis vinifera): comparative study versus other phenolic and organic compounds. J Agric Food Chem 48(5):1738–1745. doi:10.1021/jf990665o

    CAS  PubMed  Google Scholar 

  373. Terra X, Valls J, Vitrac X et al (2007) Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. J Agric Food Chem 55(11):4357–4365. doi:10.1021/jf0633185

    CAS  PubMed  Google Scholar 

  374. Jayaprakasha GK, Singh RP, Sakariah KK (2001) Antioxidant activity of grapeseed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem 73(3):285–290

    CAS  Google Scholar 

  375. Misico RI, Song LL, Veleiro AS et al (2002) Induction of quinone reductase by withanolides. J Nat Prod 65(5):677–680. doi:10.1021/np0106337

    CAS  PubMed  Google Scholar 

  376. Bellila A, Tremblay C, Pichette A et al (2011) Cytotoxic activity of withanolies isolated from Tunisian Datura metel L. Phytochemistry 72(16):2031–2036. doi:10.1016/j.phytochem.2011.07.009

    CAS  PubMed  Google Scholar 

  377. Piacente S, Montoro P, Oleszek W et al (2004) Yucca schidigera bark: phenolic constituents and antioxidant activity. J Nat Prod 67(5):882–885. doi:10.1021/np030369c

    CAS  PubMed  Google Scholar 

  378. Cuéllar MJ, Giner RM, Carmen Recio M et al (1997) Zanhasaponins A and B, antiphospholipase A2 saponins from an antiinflammatory extract of Zanha africana root bark. J Nat Prod 60(11):1158–1160. doi:10.1021/np970221r

    PubMed  Google Scholar 

  379. Runyoro DKB, Kamuhabwa A, Ngassapa OD et al (2005) Cytotoxic activity of some Tanzanian medicinal plants. East Central Afr J Pharm Sci 8(2):35–39

    Google Scholar 

  380. Masuda T (1997) Chapter 18: Anti-inflammatory antioxidants from tropical Zingiberaceae plants isolation and synthesis of new curcuminoids. In: Sara JR, Chi-Tang H (eds) Spices: flavor chemistry and antioxidant properties, vol 18, ACS symposium series. American Chemical Society, Washington, DC, pp 219–233. doi:10.1021/bk-1997-0660.ch018

    Google Scholar 

  381. Fujiwara Y, Hayashida A, Tsurushima K et al (2011) Triterpenoids isolated from Zizyphus jujuba inhibit foam cell formation in macrophages. J Agric Food Chem 59(9):4544–4552. doi:10.1021/jf200193r

    CAS  PubMed  Google Scholar 

  382. Huang X, Kojima-Yuasa A, Norikura T, Kennedy DO, Hasuma T, Matsui-Yuasa I (2007) Mechanism of the anti-cancer activity of Zizyphus jujuba in HepG2 cells. Am J Chin Med 35(3):517–532

    CAS  PubMed  Google Scholar 

  383. Mahajan RT, Chopda MZ (2009) Phyto-pharmacology of Ziziphus jujuba Mill – a plant review. Pharmacogn Review 3(6):320–329

    CAS  Google Scholar 

  384. Akinyele BO, Odiyi AC (2007) Comparative study of the vegetative morphology and the existing taxonomic status of Aloe vera L. J Plant Sci 2(5):558–563. doi:10.3923/jps.2007.558.563

    Google Scholar 

  385. Ernst E (2000) Adverse effects of herbal drugs in dermatology. Br J Dermatol 143(5):923–929. doi:10.1046/j.1365-2133.2000.03822.x

    CAS  PubMed  Google Scholar 

  386. Boudreau MD, Beland FA (2006) An evaluation of the biological and toxicological properties of Aloe Barbadensis (Miller), Aloe Vera. J Environ Sci Health C 24:103–154

    CAS  Google Scholar 

  387. Vogler BK, Ernst E (1999) Aloe vera: a systematic review of its clinical effectiveness. Br J Gen Pract 49(447):823–828

    CAS  PubMed Central  PubMed  Google Scholar 

  388. Gong M, Wang F, Chen Y (2002) Study on application of arbuscular-mycorrhizas in growing seedings of Aloe vera. J Chin Med Mater 25(1):1–3 (in Chinese)

    Google Scholar 

  389. Rossello JA, Cosín R, Boscaiu M et al (2006) Intragenomic diversity and phylogenetic systematics of wild rosemaries (Rosmarinus officinalis L. s.l., Lamiaceae) assessed by nuclear ribosomal DNA sequences (ITS). Plant Syst Evol 262(1–2):1–12. doi:10.1007/s00606-006-0454-5

    CAS  Google Scholar 

  390. Calabrese V, Scapagnini G, Catalano C et al (2000) Biochemical studies of a natural antioxidant isolated from rosemary and its application in cosmetic dermatology. Int J Tissue React 22(1):5–13

    CAS  PubMed  Google Scholar 

  391. Tall JM, Seeram NP, Zhao C, Nair MG, Meyer RA, Raja SN (2004) Tart cherry anthocyanins suppress inflammation-induced pain behavior in rat. Behav Brain Res 153(1):181–188. doi:10.1016/j.bbr.2003.11.011

    CAS  PubMed  Google Scholar 

  392. Haddad JJ, Ghadieh RM, Hasan HA, Nakhal YK, Hanbali LB (2013) Measurement of antioxidant activity and antioxidant compounds under versatile extraction conditions: II. The immuno-biochemical antioxidant properties of Black Sour Cherry (Prunus cerasus) extracts. Antiinflamm Antiallergy Agents Med Chem 12(3):229–245

    CAS  PubMed  Google Scholar 

  393. Wang SY, Yang CW, Liao JW, Zhen WW, Chu FH, Chang ST (2008) Essential oil from leaves of Cinnamomum osmophloeum acts as a xanthine oxidase inhibitor and reduces the serum uric acid levels in oxonate-induced mice. Phytomedicine 15(11):940. doi:10.1016/j.phymed.2008.06.002

    CAS  PubMed  Google Scholar 

  394. Anderberg A (1991) Taxonomy and phylogeny of tribe Inuleae (Asteraceae). Plant Syst Evol 176(1–2):75–123. doi:10.1007/BF00937947

    Google Scholar 

  395. Abid R, Qaiser M (2003) Chemotoxonomic study of Inula L. (s.str.) and its allied genera (Inuleae – Compositae) from Pakistan and Kashmir. Pak J Bot 35(2):127–140

    CAS  Google Scholar 

  396. Wei F, Ma LY, Jin WT et al (2004) Anti-inflammatory triterpenoid saponins from the seeds of Aesculus chinensis. Chem Pharm Bull 52(10):1246–1248. doi:10.1248/cpb.52.1246

    CAS  PubMed  Google Scholar 

  397. Huang J, Long C (2007) Coptis teeta-based agroforestry system and its conservation potential: a case study from northwest Yunnan. AMBIO 36(4):343–349. doi:10.1579/0044-7447(2007) 36

    PubMed  Google Scholar 

  398. Rosito MA (1975) Enumeration of the plants of Honduras. Ceiba 19(1):1–118

    Google Scholar 

  399. Zerega NJC, Ragone D, Motley TJ (2004) The complex origins of breadfruit (Artocarpus altilis, Moraceae): implications for human migrations in Oceania. Am J Bot 91(5):760–766. doi:10.3732/ajb.91.5.760

    PubMed  Google Scholar 

  400. Mastelić J, Politeo O, Jerković I (2008) Contribution to the analysis of the essential oil of Helichrysum italicum (Roth) G. Don. determination of ester bonded acids and phenols. Molecules 13(4):795–803. doi:10.3390/molecules13040795

    PubMed  Google Scholar 

  401. Patel MS, Antala BV, Barua CC, Lahkar M (2013) Anxiolytic activity of aqueous extract of Garcinia indica in mice. Int J Green Pharm 7(4):332–335. doi:10.4103/0973-8258.122089

    Google Scholar 

  402. Manns U, Bremer B (2010) Towards a better understanding of intertribal relationships and stable tribal delimitations within Cinchonoideae s.s. (Rubiaceae). Mol Phylogenet Evol 56(1):21–39. doi:10.1016/j.ympev.2010.04.002

    PubMed  Google Scholar 

  403. Mohd ZZ, Abdul HA, Osman A, Saari N, Misran A (2007) Isolation and identification of antioxidative compound from fruit of Mengkudu (Morinda citrifolia L.). Int J Food Prop 10(2):363–373. doi:10.1080/10942910601052723

    Google Scholar 

  404. Wang MY, West BJ, Jensen CJ, Nowicki D, Su C, Palu AK, Anderson G (2002) Morinda citrifolia (Noni): a literature review and recent advances in Noni research. Pharm Sin 23(12):1127–1141

    CAS  Google Scholar 

  405. Won H, Renner SS (2005) The internal transcribed spacer of nuclear ribosomal DNA in the gymnosperm Gnetum. Mol Phylogenet Evol 36:581–597. doi:10.1016/j.ympev.2005.03.011

    CAS  PubMed  Google Scholar 

  406. Won H, Renner SS (2006) Dating dispersal and radiation in the gymnosperm Gnetum (Gnetales) – clock calibration when outgroup relationships are uncertain. Syst Biol 55(4):610–622. doi:10.1080/10635150600812619

    PubMed  Google Scholar 

  407. Hyam R, Pankhurst RJ (1995) Plants and their names: a concise dictionary. Oxford University Press, Oxford, p 515

    Google Scholar 

  408. Vogl S, Picker P, Mihaly-Bison J, Fakhrudin N, Atanasov AG, Heiss EH, Wawrosch C, Reznicek G, Dirsch VM, Saukel J, Kopp B (2013) Ethnopharmacological in vitro studies on Austria’s folk medicine – an unexplored lore in vitro anti-inflammatory activities of 71 Austrian traditional herbal drugs. J Ethnopharmacol. doi:S0378-8741(13)00410-8. 10.1016/j.jep.2013.06.007

  409. Sheeja K, Shihab PK, Kuttan G (2006) Antioxidant and anti-inflammatory activities of the plant Andrographis paniculata Nees. Immunopharmacol Immunotoxicol 28(1):129–140. doi:10.1080/08923970600626007

    CAS  PubMed  Google Scholar 

  410. Hoot SB, Meyer KM, Manning JC (2012) Phylogeny and reclassification of Anemone (Ranunculaceae), with an emphasis on austral species. Syst Bot 37(1):139–152

    Google Scholar 

  411. Singh SS, Pandey SC, Srivastava S et al (2003) Chemistry and medicinal properties of Tinospora cordifolia. Indian J Pharmacol 35:83–91

    CAS  Google Scholar 

  412. Ozaki Y, Kawahara N, Harada M (1991) Anti-inflammatory effect of Zingiber cassumunar Roxb. And its active principles. Chem Pharm Bull 39(9):2353–2356

    CAS  PubMed  Google Scholar 

  413. White OE, Bowden WM (1947) Oriental and American bittersweet hybrids. J Hered 38(4):125–128

    CAS  PubMed  Google Scholar 

  414. Iannetta PPM, Wyman M, Neelam A, Jones C, Taylor MA, Davies HV, Sexton R (2000) A causal role for ethylene and endo-beta-1, 4-glucanase in the abscission of red-raspberry (Rubus idaeus) drupelets. Physiol Plant 110(4):535–543. doi:10.1111/j.1399-3054.2000.1100417.x

    CAS  Google Scholar 

  415. Liu M, Li XQ, Weber C, Lee CY, Brown J, Liu RH (2002) Antioxidant and antiproliferative activities of raspberries. J Agric Food Chem 50(10):2926–2930. doi:10.1021/jf0111209

    CAS  PubMed  Google Scholar 

  416. Heinonen M (2007) Antioxidant activity and antimicrobial effect of berry phenolics a Finnish perspective. Mol Nutr Food Res 51(6):684–691. doi:10.1002/mnfr.200700006

    CAS  PubMed  Google Scholar 

  417. Cerdá B, Tomás-Barberán FA, Espín JC (2005) Metabolism of antioxidant and chemopreventive ellagitannins from strawberries, raspberries, walnuts, and oak-aged wine in humans: identification of biomarkers and individual variability. J Agric Food Chem 53(2):227–235. doi:10.1021/jf049144d

    PubMed  Google Scholar 

  418. Vokou D, Kokkini S, Bessière JM (1988) Origanum onites (Lamiaceae) in Greece: distribution, volatile oil yield, and composition. Econ Bot 42(3):407–412. doi:10.1007/BF02860163

    CAS  Google Scholar 

  419. Sarac N, Ugur A (2008) Antimicrobial activities of the essential oils of Origanum onites L., Origanum vulgare L. Subspecies hirtum (Link) Ietswaart, Satureja thymbra L., and Thymus cilicicus Boiss. & Bal. Growing wild in Turkey. J Med Food 11(3):568–573. doi:10.1089/jmf.2007.0520

    CAS  PubMed  Google Scholar 

  420. Arulselvan P, Senthilkumar GP, Sathish Kumar D, Subramanian S (2006) Anti-diabetic effect of Murraya koenigii leaves on streptozotocin induced diabetic rats. Pharmazie 61(10):874–877

    CAS  PubMed  Google Scholar 

  421. Henrotin Y, Clutterbuck AL, Allaway D et al (2010) Biological actions of curcumin on articular chondrocytes. Osteoarthr Cartil 18(2):141–149. doi:10.1016/j.joca.2009.10.002

    CAS  PubMed  Google Scholar 

  422. Nagpal M, Sood S (2013) Role of curcumin in systemic and oral health: an overview. J Nat Sci Biol Med 4(1):3–7. doi:10.4103/09769668.107253

    CAS  PubMed Central  PubMed  Google Scholar 

  423. Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK (2004) Turmeric and curcumin: biological actions and medicinal applications. Curr Sci 87(1):44–53

    CAS  Google Scholar 

  424. Pardo F, Perich F, Villarroel L, Torres R (1993) Isolation of verbascoside, an antimicrobial constituent of Buddleja globosa leaves. J Ethnopharmacol 39(3):221–222. doi:10.1016/0378-8741(93)90041-3

    CAS  PubMed  Google Scholar 

  425. Backhouse N, Rosales L, Apablaza C et al (2008) Analgesic, anti-inflammatory and antioxidant properties of Buddleja globosa, Buddlejaceae. J Ethnopharmacol 116(2):263–269. doi:10.1016/j.jep.2007.11.025

    CAS  PubMed  Google Scholar 

  426. Houghton P (1996) Buddlejone, a diterpene from Buddleja albiflora. Phytochemistry 42(2):485–488. doi:10.1016/0031-9422(96)00001-5

    CAS  Google Scholar 

  427. Pareek A, Suthar M, Rathore GS, Bansal V (2011) Feverfew (Tanacetum parthenium L.): a systematic review. Pharmacogn Rev 5(9):103–110. doi:10.4103/0973-7847.79105

    PubMed Central  PubMed  Google Scholar 

  428. Guzman ML, Rossi RM, Karnischky L et al (2005) The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105(11):4163–4169. doi:10.1182/blood-2004-10-4135

    CAS  PubMed Central  PubMed  Google Scholar 

  429. Draves AH, Walker SE (2004) Parthenolide content of Canadian commercial feverfew preparations: label claims are misleading in most cases. Can Pharm J 136(10):23–30

    Google Scholar 

  430. Seeram NP (2008) Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem 56(3):627–629. doi:10.1021/jf071988k

    CAS  PubMed  Google Scholar 

  431. Kapasakalidis PG, Rastall RA, Gordon MH (2006) Extraction of polyphenols from processed black currant (Ribes nigrum L.) residues. J Agric Food Chem 54(11):4016–4021. doi:10.1021/jf052999l

    CAS  PubMed  Google Scholar 

  432. Mcdougall GJ, Gordon S, Brennan R, Stewart D (2005) Anthocyanin-flavanol condensation products from black currant (Ribes nigrum L.). J Agric Food Chem 53(20):7878–7885. doi:10.1021/jf0512095

    CAS  PubMed  Google Scholar 

  433. Vogl S, Picker P, Mihaly-Bison J, Fakhrudin N et al (2013) Ethnopharmacological in vitro studies on Austria’s folk medicine-An unexplored lore in vitro anti-inflammatory activities of 71 Austrian traditional herbal drugs. J Ethnopharmacol 149(3):750–771. doi:10.1016/j.jep.2013.06.007

    CAS  PubMed Central  PubMed  Google Scholar 

  434. Traitler H, Winter H, Richli U, Ingenbleek Y (1984) Characterization of gamma-linolenic acid in Ribes seed. Lipids 19(12):923–928. doi:10.1007/BF02534727

    CAS  PubMed  Google Scholar 

  435. Nicolosi E, Deng ZN, Gentile A, La Malfa S, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. TAG Theor Appl Genet 100(8):1155–1166. doi:10.1007/s001220051419

    CAS  Google Scholar 

  436. Duan JA, Wang LY, Qian SH, Su SL, Tang YP (2008) A new cytotoxic prenylated dihydrobenzofuran derivative and other chemical constituents from the rhizomes of Atractylodes lancea DC. Arch Pharm Res 12(8):965–969. doi:10.1007/s12272-001-1252- z

    Google Scholar 

  437. John MM, Jeffery LD (2000) Signal transduction in the plant immune response. Trends Biochem Sci 12(2):79–82. doi:10.1016/S0968-0004(99)01532-7

    Google Scholar 

  438. Nojiri H, Sugimori M, Yamane H, Nishimura Y, Yamada A, Shibuya N, Kodama O, Murofushi N, Omori T (1996) Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol 12(2):387–392

    Google Scholar 

  439. Dincer C, Karaoglan M, Erden F, Tetik N, Topuz A, Ozdemir F (2011) Effects of baking and boiling on the nutritional and antioxidant properties of sweet potato [Ipomoea batatas (L.) Lam.] cultivars. Plant Foods Hum Nutr 66(4):341–347. doi:10.1007/s11130-011-0262-0

    CAS  PubMed  Google Scholar 

  440. Chen ZL (1987) The acetylenes from Atractylodes macrocephala. Planta Med 53:493–494

    CAS  PubMed  Google Scholar 

  441. Weng CJ, Fang PS, Chen DH, Chen KD, Yen GC (2010) Anti-invasive effect of a rare mushroom, Ganoderma colossum, on human hepatoma cells. J Agric Food Chem 58(13):7657–7663. doi:10.1021/jf101464h

    CAS  PubMed  Google Scholar 

  442. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI, Wallingford, p 272

    Google Scholar 

  443. Yuen JW, Gohel MD (2005) Anticancer effects of Ganoderma lucidum: a review of scientific evidence. Nutr Cancer 53(1):11–17. doi:10.1207/s15327914nc5301_2

    CAS  PubMed  Google Scholar 

  444. Takashima J, Ohsaki A (2002) Brosimacutins A-I, nine new flavonoids from Brosimum acutifolium. J Nat Prod 65(12):1843–1847

    CAS  PubMed  Google Scholar 

  445. Bouskela E, Cyrino FZGA, Marcelon G (1993) Effects of Ruscus extract on the internal diameter of arterioles and venules of the hamster cheek pouch microcirculation. J Cardiovasc Pharmacol 22(2):221–224. doi:10.1097/00005344-199308000-00008

    CAS  PubMed  Google Scholar 

  446. MacKay D (2001) Hemorrhoids and varicose veins: a review of treatment options. Altern Med Rev 6(2):126–140

    CAS  PubMed  Google Scholar 

  447. Harbowy ME, Balentine DA, Davies AP, Cai Y (1997) Tea chemistry. Crit Rev Plant Sci 16(5):415–480

    CAS  Google Scholar 

  448. Toomey VM, Nickum EA, Flurer CL (2012) Cyanide and amygdalin as indicators of the presence of bitter almonds in imported raw almonds. J Forensic Sci 57(5):1313–1317. doi:10.1111/j.1556-4029.2012.02138.x

    CAS  PubMed  Google Scholar 

  449. Adhvaryu MR, Reddy MN, Vakharia BC (2008) Prevention of hepatotoxicity due to anti tuberculosis treatment: a novel integrative approach. World J Gastroenterol 14(30):4753–4762

    PubMed Central  PubMed  Google Scholar 

  450. Franco LA, Matiz GE, Calle J, Pinzón R, Ospina LF (2007) Anti-inflammatory activity of extracts and fractions obtained from Physalis peruviana L. calyces. Biomedica 27(1):110–115

    PubMed  Google Scholar 

  451. Caamal-Maldonado JA, Jimenez JJ, Torres A, Anaya A (2001) The use of allelopathic legume cover and mulch species for weed control in cropping systems. Agron J 93(1):27–36

    Google Scholar 

  452. Shemesh A, Mayo WL (1991) Australian tea tree oil: a natural antiseptic and fungicidal agent. Aust J Pharm 72:802–803

    Google Scholar 

  453. Hammer K, Carson C, Riley T, Nielsen J (2006) A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food Chem Toxicol 44(5):616–625. doi:10.1016/j.fct.2005.09.001

    CAS  PubMed  Google Scholar 

  454. Blanco MM, Costa CA, Freire AO, Santos JG, Costa M (2009) Neurobehavioral effect of essential oil of Cymbopogon citratus in mice. Phytomedicine 16(2–3):265–270. doi:10.1016/j.phymed.2007.04.007

    CAS  PubMed  Google Scholar 

  455. Samuelsen AB (2000) The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J Ethnopharmacol 77(1–2):1. doi:10.1016/S0378-8741(00)00212-9

    Google Scholar 

  456. Ngamkitidechakul C, Jaijoy K, Hansakul P, Soonthornchareonnon N, Sireeratawong S (2010) Antitumour effects of phyllanthus emblica L.: induction of cancer cell apoptosis and Inhibition of in vivo tumour promotion and in vitro invasion of human cancer cells. Phytother Res 24(9):1405–1413. doi:10.1002/ptr.3127

    CAS  PubMed  Google Scholar 

  457. Sidhu S, Pandhi P, Malhotra S, Vaiphei K, Khanduja KL (2011) Beneficial effects of Emblica officinalisinl-arginine-induced acute pancreatitis in rats. J Med Food 14(1–2):147–155. doi:10.1089/jmf.2010.1108

    CAS  PubMed  Google Scholar 

  458. Rao TP, Sakaguchi N, Juneja LR, Wada E, Yokozawa T (2005) Amla (Emblica officinalis Gaertn.) extracts reduce oxidative stress in streptozotocin-induced diabetic rats. J Med Food 8(3):362–368. doi:10.1089/jmf.2005.8.362

    CAS  PubMed  Google Scholar 

  459. Yoshikawa M, Uchida E, Kawaguchi A, Kitagawa I, Yamahara J (1992) Galloyl-oxypaeoniflorin, suffruticosides A, B, C, and D, five new antioxidative glycosides, and suffruticoside E, A paeonol glycoside, from Chinese moutan cortex. Chem Pharm Bull 40(8):2248–2250

    CAS  PubMed  Google Scholar 

  460. Clauson KA, Shields KM, McQueen CE, Persad N (2003) Safety issues associated with commercially available energy drinks. J Am Pharm Assoc 48(3):e55–e63. doi:10.1331/JAPhA.2008.07055

    Google Scholar 

  461. Qi LW, Wang CZ, Yuan CS (2011) Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 72(8):689–699. doi:10.1016/j.phytochem.2011.02.012

    CAS  PubMed Central  PubMed  Google Scholar 

  462. Cichoke AJ (2001) Secrets of Native American herbal remedies: a comprehensive guide to the Native American tradition of using herbs and the mind/body/spirit connection for improving health and well-being. Avery/Penguin Putnam, New York

    Google Scholar 

  463. Rao KV, Kasanah N, Wahyuono S et al (2004) Three new manzamine alkaloids from a common Indonesian sponge and their activity against infectious and tropical parasitic diseases. J Nat Prod 67(8):1314–1318. doi:10.1021/np0400095

    CAS  PubMed  Google Scholar 

  464. Zhang B, Higuchi R, Miyamoto T et al (2008) Neuritogenic activity-guided isolation of a free base form manzamine A from a marine sponge, Acanthostrongylophora aff. ingens (Thiele, 1899). Chem Pharm Bull 56(6):866–869

    CAS  PubMed  Google Scholar 

  465. Meragelman KM, West LM, Northcote PT et al (2002) Unusual sulfamate indoles and a novel indolo[3,2-a]carbazole from Ancorina sp. J Org Chem 67(19):6671–6677. doi:10.1021/jo020120k

    CAS  PubMed  Google Scholar 

  466. Simon-Levert A, Arrault A, Bontemps-Subielos N, Canal C, Banaigs B (2005) Meroterpenes from the Ascidian Aplidium aff. Densum. J Nat Prod 68(9):1412–1415. doi:10.1021/np050110p

    CAS  PubMed  Google Scholar 

  467. Li G-Y, Li B-G, Yang T et al (2005) Sesterterpenoids, terretonins A-D, and an alkaloid asterrelenin from Aspergillus terreus. J Nat Prod 68(8):1243–1246. doi:10.1021/np0501738

    CAS  PubMed  Google Scholar 

  468. Subazini TK, Ramesh Kumar G (2011) Characterization of Lovastatin biosynthetic cluster proteins in Aspergillus terreus strain ATCC 20542. Bioinformation 6(7):250–254

    PubMed Central  PubMed  Google Scholar 

  469. Elsebai MF, Rempel V, Schnakenburg G, Kehraus S, Müller CE, König GM (2011) Identification of a potent and selective cannabinoid CB1 receptor antagonist from Auxarthron reticulatum. ACS Med Chem Lett 2(11):866–869. doi:10.1021/ml200183z

    CAS  PubMed Central  PubMed  Google Scholar 

  470. Sharma V, Lansdell TA, Jin G et al (2004) Inhibition of cytokine production by hymenialdisine derivatives. J Med Chem 47(14):3700–3703. doi:10.1021/jm040013d

    CAS  PubMed  Google Scholar 

  471. Sharma V, Lansdell TA, Jin G et al (2004) Inhibition of cytokine production by hymenialdisine derivatives. J Med Chem 47(14):3700–3703

    CAS  PubMed  Google Scholar 

  472. Wu S-L, Sung P-J, Su J-H et al (2003) Briaexcavatolides S-V, four new briaranes from a Formosan gorgonian Briareum excavatum. J Nat Prod 66(9):1252–1256. doi:10.1021/np030102d

    CAS  PubMed  Google Scholar 

  473. Yeh T-T, Wang S-K, Dai C-F et al (2012) Briacavatolides A-C, new briaranes from the Taiwanese octocoral Briareum excavatum. Mar Drugs 10(5):1019–1026. doi:10.3390/md10051019

    CAS  PubMed Central  PubMed  Google Scholar 

  474. Sheu J-H, Sung P-J, Su J-H et al (1999) Excavatolides U-Z, new briarane diterpenes from the Gorgonian Briareum excavatum. J Nat Prod 62(10):1415–1420. doi:10.1021/np990302i

    CAS  PubMed  Google Scholar 

  475. Sung P-J, Su J-H, Wang G-H et al (1999) Excavatolides F-M, new briarane diterpenes from the Gorgonian Briareum excavatum. J Nat Prod 62(3):457–463. doi:10.1021/np980446h

    CAS  PubMed  Google Scholar 

  476. Sheu J-H, Sung P-J, Cheng M-C et al (1998) Novel cytotoxic diterpenes, excavatolides A-E, isolated from the Formosan gorgonian Briareum excavatum. J Nat Prod 61(5):602–608. doi:10.1021/np970553w

    CAS  PubMed  Google Scholar 

  477. Kwak JH, Schmitz FJ, Williams GC (2001) Milolides, new briarane diterpenoids from the western Pacific octocoral Briareum stechei. J Nat Prod 64(6):754–760. doi:10.1021/np010009u

    CAS  PubMed  Google Scholar 

  478. Appleton DR, Sewell MA, Berridge MV et al (2002) A new biologically active malyngamide from a New Zealand collection of the sea hare Bursatella leachii. J Nat Prod 65(4):630–631. doi:10.1021/np010511e

    CAS  PubMed  Google Scholar 

  479. Zampella A, D’Auria MV, Paloma LG et al (1996) Callipeltin A, an Anti-HIV cyclic depsipeptide from the new Caledonian Lithistida sponge Callipelta sp. J Am Chem Soc 118(26):6202–6209. doi:10.1021/ja954287p

    CAS  Google Scholar 

  480. Tan LT, Williamson RT, Gerwick WH (2000) cis, cis- and trans, trans-ceratospongamide, new bioactive cyclic heptapeptides from the Indonesian red alga Ceratodictyon spongiosum and symbiotic sponge Sigmadocia symbiotica. J Org Chem 65(2):419–425. doi:10.1021/jo991165x

    CAS  PubMed  Google Scholar 

  481. Akiyama T, Ueoka R, van Soest RW et al (2009) Ceratodictyols, 1-glyceryl ethers from the red alga-sponge association Ceratodictyon spongiosum/Haliclona cymaeformis. J Nat Prod 72(8):1552–1554. doi:10.1021/np900355m

    CAS  PubMed  Google Scholar 

  482. Tomono Y, Hirota H, Fusetani N (1999) Isogosterones A-D, antifouling 13,17-secosteroids from an Octocoral Dendronephthya sp. J Org Chem 64(7):2272–2275. doi:10.1021/jo981828v

    CAS  Google Scholar 

  483. Harder T, Lau SC, Dobretsov S, Fang TK, Qian PY (2003) A distinctive epibiotic bacterial community on the soft coral Dendronephthya sp. and antibacterial activity of coral tissue extracts suggest a chemical mechanism against bacterial epibiosis. FEMS Microbiol Ecol 43(3):337–347

    CAS  PubMed  Google Scholar 

  484. Golik J, Dickey JK, Todderud G et al (1997) Isolation and structure determination of sulfonoquinovosyl dipalmitoyl glyceride, a P-selectin receptor inhibitor from the alga Dictyochloris fragrans. J Nat Prod 60(4):387–389. doi:10.1021/np9606761

    CAS  PubMed  Google Scholar 

  485. Pedpradab S, Edrada RA, Ebel R et al (2004) New β-carboline alkaloids from the Andaman Sea Sponge Dragmacidon sp. J Nat Prod 67(12):2113–2116. doi:10.1021/np0401516

    CAS  PubMed  Google Scholar 

  486. Hooper GJ, Davies-Coleman MT, Schleyer M (1997) New diterpenes from the South African soft coral Eleutherobia aurea. J Nat Prod 60(9):889–893. doi:10.1021/np970180z

    CAS  PubMed  Google Scholar 

  487. Jensen PR, Fenical W (2005) New natural-product diversity from marine actinomycetes. In: Zhang L, Demain AL (eds) Natural products: drug discovery and therapeutic medicine. Humana Press Inc, Totowa, p 315

    Google Scholar 

  488. Shi Y-P, Rodríguez AD, Padilla OL (2001) Calyculaglycosides D and E, novel cembrane glycosides from the Caribbean gorgonian octocoral Eunicea species and structural revision of the aglycon of calyculaglycosides A-C. J Nat Prod 64(11):1439–1443. doi:10.1021/np0104121

    CAS  PubMed  Google Scholar 

  489. Garzón SP, Rodríguez AD, Sánchez JA et al (2005) Sesquiterpenoid metabolites with antiplasmodial activity from a Caribbean gorgonian coral, Eunicea sp. J Nat Prod 68(9):1354–1359

    PubMed  Google Scholar 

  490. De Rosa S, Crispino A, De Giulio A et al (1998) A new cacospongionolide inhibitor of human secretory phospholipase A2 from the Tyrrhenian sponge Fasciospongia cavernosa and absolute configuration of cacospongionolides. J Nat Prod 61(7):931–935. doi:10.1021/np980122t

    PubMed  Google Scholar 

  491. De Rosa S, Crispino A, De Giulio A et al (1999) A new cacospongionolide derivative from the sponge Fasciospongia cavernosa. J Nat Prod 62(9):1316–1318. doi:10.1021/np990125l

    PubMed  Google Scholar 

  492. Venkateswarlu Y, Farooq Biabani MA (1994) A new trisnorditerpene from the sponge Fasciospongia cavernosa. J Nat Prod 57(11):1578–1579. doi:10.1021/np50113a019

    CAS  Google Scholar 

  493. Fontana A, Cavaliere P, Ungur N et al (1999) New scalaranes from the nudibranch Glossodoris atromarginata and its sponge Prey. J Nat Prod 62(10):1367–1370. doi:10.1021/np9900932

    CAS  PubMed  Google Scholar 

  494. Fontana A, Mollo E, Ortea J et al (2000) Scalarane and homoscalarane compounds from the nudibranchs Glossodoris sedna and Glossodoris dalli: chemical and biological properties. J Nat Prod 63(4):527–530. doi:10.1021/np990506z

    CAS  PubMed  Google Scholar 

  495. Fontana A, Cavaliere P, Ungur N et al (1999) New scalaranes from the nudibranch Glossodoris atromarginata and its sponge Prey. J Nat Prod 62:1367–1370

    CAS  PubMed  Google Scholar 

  496. Machmudah S, Shotipruk A, Goto M et al (2006) Extraction of astaxanthin from Haematococcus pluvialis using supercritical CO2 and ethanol as entrainer. Ind Eng Chem Res 45(10):3652–3657. doi:10.1021/ie051357k

    CAS  Google Scholar 

  497. Ryu G, Matsunaga S, Fusetani N (1996) Three new cytotoxic sesterterpenes from the marine sponge Hyrtios cf. erectus. J Nat Prod 59(5):515–517. doi:10.1021/np960130e

    CAS  PubMed  Google Scholar 

  498. Youssef DTA, Yamaki RK, Kelly M et al (1995) A novel cytotoxic sesterterpene from the red sea sponge Hyrtios erecta. J Nat Prod 65(1):2–6. doi:10.1021/np0101853

    Google Scholar 

  499. Pettit RK, McAllister SC, Pettit GR, Herald CL, Johnson JM, Cichacz ZA (1997) A broad-spectrum antifungal from the marine sponge Hyrtios erecta. Int J Antimicrob Agents 9(3):147–152

    CAS  PubMed  Google Scholar 

  500. Kirsch G, König GM, Anthony D et al (2000) A new bioactive sesterterpene and antiplasmodial alkaloids from the marine sponge Hyrtios cf. erecta. J Nat Prod 63(6):825–829. doi:10.1021/np990555b

    CAS  PubMed  Google Scholar 

  501. Miyaoka H, Nishijima S, Mitome H, Yamada Y (2000) Three new scalarane sesterterpenoids from the Okinawan sponge Hyrtios erectus. J Nat Prod 63(10):1369–1372. doi:10.1021/np000115g

    CAS  PubMed  Google Scholar 

  502. Pettit GR, Butler MS, Williams MD et al (1996) Isolation and structure of hemibastadinols 1-3 from the papua new guinea marine sponge Ianthella bast. J Nat Prod 59(10):927–934. doi:10.1021/np960249n

    CAS  PubMed  Google Scholar 

  503. Brunner E, Ehrlich H, Schupp P et al (2009) Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta. J Struct Biol 168:539–547

    CAS  PubMed Central  PubMed  Google Scholar 

  504. Franklin MA, Penn SG, Lebrilla CB et al (1996) Bastadin 20 and bastadin O-sulfate esters from Ianthella basta: novel modulators of the Ry1R FKBP12 receptor complex. J Nat Prod 59(12):1121–1127. doi:10.1021/np960507g

    CAS  PubMed  Google Scholar 

  505. Ortlepp S (2008) Bastadins and related compounds from the marine sponges Ianthella basta and Callyspongia sp: structure elucidation and biological activities. Cuvillier Verlag, Gottingen

    Google Scholar 

  506. Greve H, Meis S, Kassack MU et al (2007) New iantherans from the marine sponge Ianthella quadrangulata: novel agonists of the P2Y11 receptor. J Med Chem 50(23):5600–5607. doi:10.1021/jm070043r

    CAS  PubMed  Google Scholar 

  507. Greve H, Kehraus S, Krick A, Kelter G, Maier A, Fiebig HH, Wright AD, König GM (2008) Cytotoxic bastadin 24 from the Australian sponge Ianthella quadrangulata. J Nat Prod 71(3):309–312. doi:10.1021/np070373e

    CAS  PubMed  Google Scholar 

  508. García M, Rodríguez J, Jiménez C (1999) Absolute structures of new briarane diterpenoids from Junceella fragilis. J Nat Prod 62(2):257–260. doi:10.1021/np980331d

    PubMed  Google Scholar 

  509. Tsai S, Spikings E, Huang IC, Lin C (2011) Study on the mitochondrial activity and membrane potential after exposing later stage oocytes of two gorgonian corals (Junceella juncea and Junceella fragilis) to cryoprotectants. Cryo Lett 32(1):1–12

    CAS  Google Scholar 

  510. Shen Y-C, Lin Y-C, Ko C-L et al (2003) New briaranes from the Taiwanese gorgonian Junceella juncea. J Nat Prod 66(2):302–305. doi:10.1021/np0203584

    CAS  PubMed  Google Scholar 

  511. Qi SH, Zhang S, Qian PY et al (2012) Antifeedant and antifouling briaranes from the South China Sea gorgonian Junceella juncea. Chem Nat Compd 45(1):49–54. doi:10.1007/s10600-009-9255-8

    Google Scholar 

  512. Matthée GF, König GM, Wright AD (1998) Three new diterpenes from the marine soft coral Lobophytum crassum. J Nat Prod 61(2):237–240. doi:10.1021/np970458n

    PubMed  Google Scholar 

  513. Lin S-T, Wang S-K, Duh C-Y (2011) Cembranoids from the Dongsha Atoll soft coral Lobophytum crassum. Mar Drugs 9(12):2705–2716. doi:10.3390/md9122705

    CAS  PubMed Central  PubMed  Google Scholar 

  514. Jaki B, Orjala J, Sticher O (1999) A novel extracellular diterpenoid with antibacterial activity from the cyanobacterium Nostoc commune. J Nat Prod 62(3):502–503

    CAS  PubMed  Google Scholar 

  515. Iwasaki J, Ito H, Aoyagi M et al (2006) Briarane-type diterpenoids from the Okinawan soft coral Pachyclavularia violacea. J Nat Prod 69(1):2–6. doi:10.1021/np0580661

    CAS  PubMed  Google Scholar 

  516. Ponomarenko LP, Kalinovsky AI, Stonik VA (2004) New scalarane-based sesterterpenes from the sponge Phyllospongia madagascarensis. J Nat Prod 67(9):1507–1510. doi:10.1021/np040073m

    CAS  PubMed  Google Scholar 

  517. Cuéllar MJ, Giner RM, Recio MC et al (1996) Two fungal lanostane derivatives as phospholipase A2 inhibitors. J Nat Prod 59(10):977–979. doi:10.1021/np9604339

    Google Scholar 

  518. Li GH, Shen YM, Zhang KQ (2005) Nematicidal activity and chemical component of Poria cocos. J Microbiol 43(1):17–20

    CAS  PubMed  Google Scholar 

  519. Rodríguez AD, Shi J-G, Huang SD (1999) Highly oxygenated pseudopterane and cembranolide diterpenes from the Caribbean sea feather Pseudopterogorgia bipinnata. J Nat Prod 62(9):1228–1237. doi:10.1021/np990064r

    PubMed  Google Scholar 

  520. Ospina CA, Rodríguez AD, Sánchez JA et al (2005) Caucanolides A-F, unusual antiplasmodial constituents from a colombian collection of the gorgonian coral Pseudopterogorgia bipinnata. J Nat Prod 68(10):1519–1526

    CAS  PubMed  Google Scholar 

  521. Rodríguez AD, Ramírez C, Rodríguez II (1999) Elisabatins A and B: new amphilectane-type diterpenes from the West Indian sea whip Pseudopterogorgia elisabethae. J Nat Prod 62(7):997–999. doi:10.1021/np990090p

    PubMed  Google Scholar 

  522. Look SA, Fenical W, Jacobs RS, Clardy J (1986) The pseudopterosins: anti-inflammatory and analgesic natural products from the sea whip Pseudopterogorgia elisabethae. Proc Natl Acad Sci 83(17):6238–6240

    CAS  PubMed Central  PubMed  Google Scholar 

  523. Rodríguez AD, González E, Huang SD (1998) Unusual terpenes with novel carbon skeletons from the West Indian sea whip Pseudopterogorgia elisabethae (Octocorallia). J Org Chem 63(20):7083–7091. doi:10.1021/jo981385v

    PubMed  Google Scholar 

  524. Rodríguez AD, Ramírez C, Rodríguez II et al (2000) Novel terpenoids from the West Indian sea whip Pseudopterogorgia elisabethae (Bayer). Elisapterosins A and B: rearranged diterpenes possessing an unprecedented cagelike framework. J Org Chem 65(5):1390–1398. doi:10.1021/jo9914869

    PubMed  Google Scholar 

  525. Marrero J, Benítez J, Rodríguez AD et al (2008) Bipinnatins K–Q, minor cembrane-type diterpenes from the West Indian Gorgonian Pseudopterogorgia kallos: isolation, structure assignment and evaluation of biological activities. J Nat Prod 71(3):381–389. doi:10.1021/np0705561

    CAS  PubMed  Google Scholar 

  526. Barsby T, Kubanek J (2005) Isolation and structure elucidation of feeding deterrent diterpenoids from the Sea Pansy, Renilla reniformis. J Nat Prod 68(4):511–516. doi:10.1021/np049609u

    CAS  PubMed  Google Scholar 

  527. Srikantha T, Klapach A, Lorenz WW et al (1996) The sea pansy Renilla reniformis luciferase serves as a sensitive bioluminescent reporter for differential gene expression in Candida albicans. J Bacteriol 178(1):121–129

    CAS  PubMed Central  PubMed  Google Scholar 

  528. Casapullo A, Giuseppe B, Ines B et al (2000) New bisindole alkaloids of the topsentin and hamacanthin classes from the Mediterranean marine sponge Rhaphisia lacazei. J Nat Prod 63(4):447–451. doi:10.1021/np9903292

    CAS  PubMed  Google Scholar 

  529. Zhang C, Li J, Su J et al (2006) Cytotoxic diterpenoids from the soft coral Sarcophyton crassocaule. J Nat Prod 69(10):1476–1480. doi:10.1021/np050499g

    CAS  PubMed  Google Scholar 

  530. Lin W-Y, Lu Y, Su J-H et al (2011) Bioactive cembranoids from the dongsha atoll soft coral Sarcophyton crassocaule. Mar Drugs 9(6):994–1006. doi:10.3390/md9060994

    CAS  PubMed Central  PubMed  Google Scholar 

  531. König GM, Wright AD (1998) New cembranoid diterpenes from the soft coral Sarcophyton ehrenbergi. J Nat Prod 61(4):494–496. doi:10.1021/np9704112

    Google Scholar 

  532. Wang S-K, Hsieh M-K, Duh C-Y (2012) Three new cembranoids from the Taiwanese Soft Coral Sarcophyton ehrenbergi. Mar Drugs 10(7):1433–1444. doi:10.3390/md10071433

    CAS  PubMed Central  PubMed  Google Scholar 

  533. Kuo YH, Hsu HC, Chen YC (2012) A novel compound with antioxidant activity produced by Serratia ureilytica TKU013. J Agric Food Chem 60(36):9043–9047. doi:10.1021/jf302481n

    CAS  PubMed  Google Scholar 

  534. Renner MK, Shen Y-C, Cheng X-C et al (2005) Cyclomarins A-C, new antiinflammatory cyclic peptides produced by a marine bacterium (Streptomyces sp.). J Am Chem Soc 121(49):11273–11276. doi:10.1021/ja992482o

    Google Scholar 

  535. Pereira R, Medeiros YS, Fröde TS (2006) Antiinflammatory effects of Tacrolimus in a mouse model of pleurisy. Transpl Immunol 16(2):105–111

    CAS  PubMed  Google Scholar 

  536. Sudha S, Selvam M (2011) Antibacterial activity of a new Streptomyces sp. SU isolated from Rhizosphere soil. J Pharm Res 4(5):1515–1516

    Google Scholar 

  537. Mohammed R, Peng J, Kelly M et al (2006) Cyclic heptapeptides from the Jamaican sponge Stylissa caribica. J Nat Prod 69(12):1739–1744. doi:10.1021/np060006n

    CAS  PubMed  Google Scholar 

  538. Buchanan MS, Carroll AR, Addepalli R et al (2007) Natural products, stylissadines A and B, specific antagonists of the P2X7 receptor, an important inflammatory target. J Org Chem 72(7):2309–2317. doi:10.1021/jo062007q

    CAS  PubMed  Google Scholar 

  539. Prinsep MR, Thomson RA (1996) Tolypodiol: an antiinflammatory diterpenoid from the cyanobacterium Tolypothrix nodosa. J Nat Prod 59(8):786–788. doi:10.1021/np9602574

    CAS  PubMed  Google Scholar 

  540. Prinsep MR, Caplan FR, Moore RE et al (1992) Tolyporphin, a novel multidrug resistance reversing agent from the blue-green alga Tolypothrix nodosa. J Am Chem Soc 114(1):385–387. doi:10.1021/ja00027a072

    CAS  Google Scholar 

  541. Horgen FD, Sakamoto B, Scheuer PJ (2000) New triterpenoid sulfates from the red alga Tricleocarpa fragilis. J Nat Prod 63(2):210–216. doi:10.1021/np990448h

    CAS  PubMed  Google Scholar 

  542. Veluri R, Oka I, Wagner-Döbler I (2003) New indole alkaloids from the North Sea bacterium Vibrio parahaemolyticus. J Nat Prod 66(11):1520–1523. doi:10.1021/np030288g

    CAS  PubMed  Google Scholar 

  543. Twedt RM, Novelli RE, Spaulding PL et al (1970) Comparative hemolytic activity of Vibrio parahaemolyticus and related vibrios. Infect Immun 1(4):394–399

    CAS  PubMed Central  PubMed  Google Scholar 

  544. Deyrup Stephen T, Gloer James B, Kerry O’D et al (2007) Kolokosides A-D: triterpenoid glycosides from a Hawaiian isolate of Xylaria sp. J Nat Prod 70(3):378–382. doi:10.1021/np060546k

    CAS  PubMed  Google Scholar 

  545. Liu X, Dong M, Chen X, Jiang M, Lv X, Zhou J (2008) Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl Microbiol Biotechnol 78(2):241–247

    CAS  PubMed  Google Scholar 

  546. Hua K-F, Hsu H-Y, Su Y-C et al (2006) Study on the antiinflammatory activity of methanol extract from seagrass Zostera japonica. J Agric Food Chem 54(2):306–311. doi:10.1021/jf0509658

    CAS  PubMed  Google Scholar 

  547. Abe M, Yokota K, Kurashima A et al (2009) High water temperature tolerance in photosynthetic activity of Zostera japonica Ascherson & Graebner seedlings from Ago Bay, Mie Prefecture, central Japan. Fish Sci 75(5):1117–1123. doi:10.1007/s12562-009-0141

    CAS  Google Scholar 

  548. Szakacs G, Morovjan G, Tengerdy R (1998) Production of lovastatin by a wild strain of Aspergillus terreus. Biotechnol Lett 20(4):411–415

    CAS  Google Scholar 

  549. Sunga P-J, Sua Y-D, Li G-Y (2009) Excavatoids A–D, new polyoxygenated briaranes from the octocoral Briareum excavatum. Tetrahedron xxx:1–7

    Google Scholar 

  550. Lim SC, de Voogd N, Tan KS (2008) A guide to sponges of Singapore. Singapore Science Centre, Singapore, 173

    Google Scholar 

  551. Bouchet P, Caballer M (2012) Doriprismatica atromarginata. World Register of Marine Species. http://www.marinespecies.org/aphia.php?p=taxdetails&id=558499

  552. Rudman WB (1990) The Chromodorididae (Opisthobranchia: Mollusca) of the Indo-West Pacific: further species of Glossodoris, Thorunna and the Chromodoris aureomarginata colour group. Zool J Linnean Soc 100:263–326

    Google Scholar 

  553. Johnson RF, Gosliner TM (2012) Traditional taxonomic groupings mask evolutionary history: a molecular phylogeny and new classification of the chromodorid nudibranchs. PLoS ONE 7(4):e33479

    CAS  PubMed Central  PubMed  Google Scholar 

  554. Lorentz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Google Scholar 

  555. Ashour MA, Elkhayat ES, Ebel R et al (2007) Indole alkaloid from the red sea sponge Hyrtios erectus. ARKIVOC xv:225–231

    Google Scholar 

  556. Heckrodt TJ, Mulzer J (2005) Marine natural products from Pseudopterogorgia elisabethae: structures, biosynthesis, pharmacology, and total synthesis, natural products synthesis II. Top Curr Chem 244:1–41

    CAS  Google Scholar 

  557. Espada A, Rivera Sagredo A, De la Fuente JM et al (1997) New cytochalasins from the fungus Xylaria hypoxylon. Tetrahedron 53(18):6485–6492

    CAS  Google Scholar 

  558. Robinson SC, Laks PE (2010) Culture age and wood species affect zone line production of Xylaria polymorpha. Open Mycol J 4:18–21

    Google Scholar 

  559. Liu Q, Wang H, Ng TB (2006) First report of a xylose-specific lectin with potent hemagglutinating, antiproliferative and anti-mitogenic activities from a wild ascomycete mushroom. Biochim Biophys Acta 1760(12):1914–1919. doi:10.1016/j.bbagen.2006.07.010

    CAS  PubMed  Google Scholar 

  560. Kämpfer P (2006) The family streptomycetaceae, Part I: Taxonomy. In: Dworkin M et al (eds) The prokaryotes: a handbook on the biology of bacteria. Springer, Berlin, pp 538–604

    Google Scholar 

  561. Labeda DP (2010) Multilocus sequence analysis of phytopathogenic species of the genus Streptomyces. Int J Syst Evol Microbiol 61(10):2525. doi:10.1099/ijs.0.028514-0

    PubMed  Google Scholar 

  562. Dumbauld BR, Wyllie-Echeverria S (2003) The influence of burrowing thalassinid shrimps on the distribution of intertidal seagrasses in Willapa Bay, Washington, USA. Aquat Bot 77:27–42

    Google Scholar 

  563. Harrison PG (1982) Comparative growth of Zostera japonica Aschers. & Graebn. and Z. marina under simulated intertidal and subtidal conditions. Aquat Bot 14:373–379

    Google Scholar 

  564. Welch JJ (2010) The Island rule and Deep-Sea gastropods: re-examining the evidence. PLoS ONE 5(1):e8776. doi:10.1371/journal.pone.0008776

    PubMed Central  PubMed  Google Scholar 

  565. Tamaru Y, Takani Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microbiol 71(11):7327–7333. doi:10.1128/AEM.71.11.7327-7333.2005

    CAS  PubMed Central  PubMed  Google Scholar 

  566. Wu Y, Wang D (2009) A new class of natural glycopeptides with sugar moiety-dependent antioxidant activities derived from Ganoderma lucidum fruiting nodies. J Proteome Res 8(2):436–442. doi:10.1021/pr800554w

    CAS  PubMed Central  PubMed  Google Scholar 

  567. Sonne C, Dietz R, Hans JS et al (2006) Impairment of cellular immunity in west Greenland sledge dogs (Canis familiaris) dietary exposed to polluted minke whale (Balaenoptera acutorostrata) blubber. Environ Sci Technol 40(6):2056–2062. doi:10.1021/es052151d

    CAS  PubMed  Google Scholar 

  568. Brix O, Condò SG, Bardgard A et al (1990) Temperature modulation of oxygen transport in a diving mammal (Balaenoptera acutorostrata). Biochem J 271(2):509–513

    CAS  PubMed Central  PubMed  Google Scholar 

  569. Thwin MM, Gopalakrishnakone P, Kini RM et al (2000) Recombinant antitoxic and antiinflammatory factor from the nonvenomous snake Python reticulates: phospholipase A2 inhibition and venom neutralizing potential. Biochemistry 39(31):9604–9611. doi:10.1021/bi000395z

    CAS  PubMed  Google Scholar 

  570. Amira Mnari B, Harzallah HJ, Dhibi M et al (2010) Nutritional fatty acid quality of raw and cooked farmed and wild sea bream (Sparus aurata). J Agric Food Chem 58(1):507–512. doi:10.1021/jf902096w

    Google Scholar 

  571. Cuesta A, Esteban MA, Meseguer J (2002) Natural cytotoxic activity in seabream (Sparus aurata L.) and its modulation by vitamin C. Fish Shellfish Immunol 13(2):97–109

    CAS  PubMed  Google Scholar 

  572. Shine R, Harlow PS, Keogh JS (1998) The influence of sex and body size on food habits of a giant tropical snake, Python reticulatus. Funct Ecol 12(2):248–258

    Google Scholar 

  573. Akkol K, Orhan DD, Gürbüz I, Yesilada E (2010) In vivo activity assessment of a “honey-bee pollen mix” formulation. Pharm Biol 48(3):253–259. doi:10.3109/13880200903085482

    Google Scholar 

  574. Engel MS (1999) The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae: Apis). J Hymenopt Res 8:165–196

    Google Scholar 

  575. Arnason U, Gullberg A, Widegren B (1993) Cetacean mitochondrial DNA control region: sequences of all extant baleen whales and two sperm whale species. Mol Biol Evol 10(5):960–970

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Jain, P., Pandey, R., Shukla, S.S. (2015). Natural Sources of Anti-inflammation. In: Inflammation: Natural Resources and Its Applications. SpringerBriefs in Immunology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2163-0_4

Download citation

Publish with us

Policies and ethics