Skip to main content

Feed Forward Neural Network Approach for Reversible Logic Circuit Simulation in QCA

  • Conference paper
  • First Online:
Information Systems Design and Intelligent Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 339))

Abstract

Quantum dot Cellular Automata (QCA) is becoming a new paradigm in nanoscale computing. Artificial Neural Network model is a promising model to design and simulate QCA circuits. This study proposes a new approach to design, model and simulate small circuit as well as large circuit. Feed Forward Neural Network (FFNN) model is used to design and simulate the reversible circuit as well as conservative circuit. The simulation result of this proposed FFNN model gives better result than exhaustive simulation of QCADesigner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International technology roadmap for semiconductors. Semiconductor Industries Association, San Jose, CA. http://public.itrs.net (2001)

  2. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)

    Article  Google Scholar 

  3. Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80(8), 4722–4736 (1996)

    Article  Google Scholar 

  4. Smith, C.G.: Computation without current. Science 284(5412), 274 (1999)

    Article  Google Scholar 

  5. Dey, A., Das, K., De, D., De, M.: Online testable conservative adder design in quantum dot cellular automata. In: Emerging Trends in Computing and Communication, pp. 385–393. Springer India, Berlin (2014)

    Google Scholar 

  6. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MATH  Google Scholar 

  8. Toffoli, T.: Reversible Computing, pp. 632–644. Springer, Berlin (1980)

    Google Scholar 

  9. Fredkin, E., Toffoli, T.: Conservative Logic, pp. 47–81. Springer, London (2002)

    Google Scholar 

  10. Feynman, R.P.: Quantum mechanical computers1. Found. Phys. 16(6), 986 (1985)

    MathSciNet  Google Scholar 

  11. Das, K., De, D.: Characterization, test and logic synthesis of novel conservative and reversible logic gates for Qca. Int. J. Nanosci. 9(03), 201–214 (2010)

    Article  Google Scholar 

  12. Walus, K.: ATIPS laboratory QCADesigner homepage. ATIPS Laboratory, University Calgary. Calgary, Canada (2002)

    Google Scholar 

  13. Henderson, S.C., Johnson, E.W., Janulis, J.R., Tougaw, P.D.: Incorporating standard CMOS design process methodologies into the QCA logic design process. IEEE Trans. Nanotechnol. 3(1), 2–9 (2004)

    Article  Google Scholar 

  14. Ottavi, M., Schiano, L., Lombardi, F., Tougaw, D.: HDLQ: a HDL environment for QCA design. ACM J. Emerg. Technol. Comput. Syst. (JETC) 2(4), 243–261 (2006)

    Article  Google Scholar 

  15. Behrman, E.C., Niemel, J., Steck, J.E., Skinner, S.R.: A quantum dot neural network. In: Proceedings of the 4th Workshop on Physics of Computation, pp. 22–24 (1996)

    Google Scholar 

  16. Neto, O.P.V., Pacheco, M.A.C., Hall Barbosa, C.R.: Neural network simulation and evolutionary synthesis of QCA circuits. IEEE Trans. Comput. 56(2), 191–201 (2007)

    Article  MathSciNet  Google Scholar 

  17. Hayati, M., Rezaei, A.: New approaches for modeling and simulation of quantum-dot cellular automata. J. Comput. Electron. 13(2), 537–546 (2014)

    Article  Google Scholar 

  18. Bebis, G., Georgiopoulos, M.: Feed-forward neural networks. Potentials IEEE 13(4), 27–31 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Dey, A., Das, K., Das, S., De, M. (2015). Feed Forward Neural Network Approach for Reversible Logic Circuit Simulation in QCA. In: Mandal, J., Satapathy, S., Kumar Sanyal, M., Sarkar, P., Mukhopadhyay, A. (eds) Information Systems Design and Intelligent Applications. Advances in Intelligent Systems and Computing, vol 339. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2250-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2250-7_7

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2249-1

  • Online ISBN: 978-81-322-2250-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics