Skip to main content

Wormlike Micelles as Templates for Rod-Shaped Nanoparticles: Experiments and Simulations

  • Chapter
Nanoscale and Microscale Phenomena

Abstract

We report here a novel and generic method for the synthesis of rod-shaped nanoparticles of AgBr, AgCl, and Fe2O3 using wormlike micelles (WLMs) in aqueous solution. It is observed that the presence of a wormlike micellar phase is critical to the formation of such anisotropic nanoparticles. Spherical nanoparticles are otherwise obtained when wormlike micelles are absent. Nanoparticle precursors first form spherical primary particles at short times, which then coagulate and consolidate on a surfactant backbone to form nanorods. Interestingly, when preformed spherical nanoparticles are added to a wormlike micellar system, nanorods similar to the in situ method are observed. This technique has been explored for the synthesis of anisotropic iron oxide particles as well. Further a mechanism for the formation of these nanorods is proposed and is simulated using a framework of slithering snake dynamics for WLM. In this study, the wormlike micelles are represented by flexible polymers of fixed contour length. A rule-based intermicellar particle exchange protocol is formulated and simulated on a periodic lattice. Simulations reveal that the particles start accumulating slowly on few of the micellar backbones; toward the end, the fraction of micelles carrying no particles increases drastically which is a typical behavior observed in coagulation processes. The particulate masses accumulated on the WLMs are then converted to their respective lengths and diameters.

Vinod Kumar Gupta has contributed to the experimental part (AgBr nanorods), Suvajeet Duttagupta has contributed to the experimental part (Fe2O3 nanorods) and Advait Chhatre has contributed to the Simulation part of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Israelachvilli JN (1992) Intermolecular and surface forces, chapter 17, 2nd edn. Academic, London

    Google Scholar 

  2. Husein MM, Rodil E, Vera JH (2006) A novel approach for the preparation of AgBr nanoparticles from their bulk solid precursor using CTAB microemulsions. Langmuir ACS J Surf Colloids 22(5):2264–2272

    Article  Google Scholar 

  3. Husein M, Rodil E, Vera JH (2004) Formation of silver bromide precipitate of nanoparticles in a single microemulsion utilizing the surfactant counterion. J Colloid Interface Sci 273(2):426–434

    Article  Google Scholar 

  4. Xu S, Li Y (2003) Different morphology at different reactant molar ratios: synthesis of silver halide low-dimensional nanomaterials in microemulsions. J Mater Chem 13(1):163–165

    Article  Google Scholar 

  5. Nikolenko DYu, Brichkin SB, Razumov VF (2008) Synthesis of mixed silver halide nanocrystals in reversed micelles. High Energy Chem 42(4):305–310

    Article  Google Scholar 

  6. Trewyn BG, Nieweg JA, Zhao Y, Lin VS-Y (2008) Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane penetration. Chem Eng J 137(1):23–29

    Article  Google Scholar 

  7. Choi DG, Kim WJ, Yang SM (2000) Shear-induced microstructure and rheology of cetylpyridinium chloride/sodium salicylate micellar solutions. Korea-Aust Rheol J 12(3):143–149

    Google Scholar 

  8. Kim TW, Chung PW, Lin VSY (2010) Facile synthesis of monodisperse spherical MCM-48 mesoporous silica nanoparticles with controlled particle size. Chem Mater 22:5093–5104

    Article  Google Scholar 

  9. Slowing II, Vivero-Escoto JL, Wu C, Lin VS (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288

    Article  Google Scholar 

  10. Wang L, Yamauchi Y (2011) Synthesis of mesoporous pt nanoparticles with uniform particle size from aqueous surfactant solutions toward highly active electrocatalysts. Chem Eur J 17:8810–8815

    Article  Google Scholar 

  11. Qiao Z, Zhang L, Guo M, Liu Y, Huo Q (2009) Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chem Mater 21:3823–3829

    Article  Google Scholar 

  12. He Q, Shi J (2011) Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J Mater Chem 21:5845–5855

    Article  Google Scholar 

  13. Suzuki K, Ikari K, Imai H (2004) Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system. J Am Chem Soc 126:462–463

    Article  Google Scholar 

  14. Chang S-S, Lee C-L, Chris Wang CR (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101(34):6661–6664

    Article  Google Scholar 

  15. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105(19):4065–4067

    Article  Google Scholar 

  16. Mirgorod YA, Efimova NA (2008) The synthesis of superparamagnetic Pt/Ni nanohybrids in direct micelles of cationic surfactants. Russ J Phys Chem A 82:385–389

    Google Scholar 

  17. Ban I, Drofenic M, Makovec D (2006) The synthesis of iron–nickel alloy nanoparticles using a reverse micelle technique. J Magn Magn Mater 307(2):250–256

    Article  Google Scholar 

  18. Xu S, Zhou H, Xu J, Li Y (2002) Synthesis of size-tunable silver iodide nanowires in reverse micelles. Langmuir 18(26):10503–10504

    Article  Google Scholar 

  19. Zhang X, Cui Z (2009) Synthesis of Cu nanowires via solventhermal reduction in reverse microemulsion system. J Phys Conf Ser 152:012022

    Article  Google Scholar 

  20. Yang X, Chen S, Zhao S, Li D, Ma H (2003) Synthesis of copper nanorods using electrochemical methods. J Serbian Chem Soc 68(11):843–847

    Article  Google Scholar 

  21. Liu Y, Wang W, Zhan Y, Zheng C, Wang G (2002) A simple route to hydroxyapatite nanofibers. Mater Lett 56(4):496–501

    Article  Google Scholar 

  22. Xi L, Lam YM, Xu YP, Li L-J (2008) Synthesis and characterization of one-dimensional CdSe by a novel reverse micelle assisted hydrothermal method. J Colloid Interface Sci 320(2):491–500

    Article  Google Scholar 

  23. Rouault Y, Milchev A (1997) A Monte Carlo lattice study of living polymers in a confined geometry. Macromol Theory Simul 6(6):1177–1190

    Article  Google Scholar 

  24. Vogt M, Hernandez R (2001) A two-dimensional polymer growth model. J Chem Phys 115(3):1575

    Article  Google Scholar 

  25. Vogt M, Hernandez R (2002) A three-dimensional polymer growth model. J Chem Phys 116(23):10485

    Article  Google Scholar 

  26. Carl W, Rouault Y (1998) On the length distribution of semi-flexible linear micelles. Macromol Theory Simul 7(5):497–500

    Article  Google Scholar 

  27. Rouault Y (1998) The effect of stiffness in wormlike micelles. Eur Phys J B Condens Matter Complex Syst 81:75–81

    Article  Google Scholar 

  28. Rouault Y (1998) Change of the scaling behavior of the end-to-end square distance in a two-dimensional polydisperse system. Eur Phys J B 4(1):61–64

    Article  Google Scholar 

  29. Rouault Y (1998) Living polymers in random media: a 2D Monte-Carlo investigation on a square lattice. Eur Phys J B Condens Matter Complex Syst 2:483–487

    Article  Google Scholar 

  30. Rouault Y (1996) A Monte Carlo study of living polymers in 2D: effect of small chains on static properties. J Phys II 6(9):1301–1311

    Google Scholar 

  31. Rouault Y (1999) Equilibrium polymerization: towards a numerical description of the dynamics of wormlike micelles. Macromol Theory Simul 8(6):551–560

    Article  Google Scholar 

  32. Rouault Y, Milchev A (1995) Monte Carlo study of living polymers with the bond-fluctuation method. Phys Rev E 51(6):5905–5910

    Article  Google Scholar 

  33. Rouault Y (1998) Chain radius dependence on concentration in a 2D living polymer system. Eur Phys J B 4(3):321–324

    Article  Google Scholar 

  34. Cates ME, Candau SJ (1990) Statics and dynamics of worm-like surfactant micelles. J Phys Condens Matter 2(33):6869–6892

    Article  Google Scholar 

  35. Shikata T, Hirata H, Kotaka T (1987) Micelle formation of detergent molecules in aqueous media: viscoelastic properties of aqueous cetyltrimethylammonium bromide solutions. Langmuir 3(6):1081–1086

    Article  Google Scholar 

  36. Bai J, Li Y, Zhang C, Liang X, Yang Q (2008) Preparing AgBr nanoparticles in poly(vinyl pyrrolidone) (PVP) nanofibers. Colloids Surf A Physicochem Eng Asp 329(3):165–168

    Article  Google Scholar 

  37. Liu X-H, Luo X-H, Lu S-X, Zhang J-C, Cao W-L (2007) A novel cetyltrimethyl ammonium silver bromide complex and silver bromide nanoparticles obtained by the surfactant counterion. J Colloid Interf Sci 307(1):94–100

    Article  Google Scholar 

  38. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109(29):13857–13870

    Article  Google Scholar 

  39. Bai J, Li Y, Yang S, Du J, Wang S, Zhang C, Yang Q, Xuesi C (2007) Synthesis of AgCl-PAN composite nanofibres using an electrospinning method. Nanotechnology 18:305601

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a research grant titled Engineering Aspects of Ultrafine Particle Technology Project code 07DS014/ Grant no-IR/S3/EU-03/2006, made available under the IRPHA scheme of the Department of Science and Technology, Government of India, New Delhi (India). The author also acknowledges various analytical facilities provided by the Sophisticated Analytical Instrument Facility (SAIF), FEGSEM facility and vibrating sample magnetometer (SVSM) facility provided by the Industrial Research and Consultancy Center (IRCC), and X-ray diffraction facility at the Department of Metallurgical Engineering and Material Science (MEMS), IIT Bombay, Mumbai.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anurag Mehra or Rochish Thaokar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Gupta, V.K., Duttagupta, S., Chhatre, A., Mehra, A., Thaokar, R. (2015). Wormlike Micelles as Templates for Rod-Shaped Nanoparticles: Experiments and Simulations. In: Joshi, Y., Khandekar, S. (eds) Nanoscale and Microscale Phenomena. Springer Tracts in Mechanical Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2289-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2289-7_3

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2288-0

  • Online ISBN: 978-81-322-2289-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics