Skip to main content
  • 1855 Accesses

Abstract

Mn deficiency is rarely observed since its cellular requirement is low. Mn is a component of photosynthetic proteins and enzymes. Mn is a cofactor of about 35 enzymes. Mn2+ uptake by roots is biphasic and consists of (1) an initial rapid reversible and non-metabolic process and (2) a slow second phase. The gene families involved in Mn transport include cation/H+ antiporters, Nramps, the ZIP family and the CDF family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou M, Symeonidis L, Hatzistavrou E, Yupsanis T (2002) Nucleolytic activities and appearance of a new DNase in relation to nickel and manganese accumulation in Alyssum múrale. J Plant Physiol 159:1087–1095

    Article  Google Scholar 

  • Bradl H (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 277:1–18

    Article  CAS  PubMed  Google Scholar 

  • Burnell J (1988) The biochemistry of manganese in plants. In: Graham RD, Hannam RJ, Uren NJ (eds) Manganese in soil and plants. Kluwer Academic Publishers, Dordrecht, pp 125–137

    Chapter  Google Scholar 

  • Cailliatte R, Lapeyre B, Briat JF, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422:217–228

    Article  CAS  PubMed  Google Scholar 

  • Cailliatte R, Schikora A, Briat J-F, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22(3):904–917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266

    Article  CAS  Google Scholar 

  • Ducic T, Polle A (2005) Transport and detoxification of manganese and copper in plants. Braz J Plant Physiol 17:103–112

    Article  CAS  Google Scholar 

  • Eide DJ (1998) The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18:441–469

    Article  CAS  PubMed  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93:5624–5628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Führs H, Hartwig M, Buitrago L, Heintz D, Van Dorsselaer A, Braun H, Horst W (2008) Early manganese-toxicity response in Vigna unguiculata L. – a proteomic and transcriptomic study. Proteomics 8:149–159

    Article  PubMed  Google Scholar 

  • Guest C, Schulze D, Thompson I, Huber D (2002) Correlating manganese X-ray absorption near-edge structure spectra with extractable soil manganese. Soil Sci Soc Am J 66:1172–1181

    Article  CAS  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613

    Article  CAS  PubMed  Google Scholar 

  • Hanikenne M, Motte P, Wu MCS, Wang T, Loppes R, Matagne RF (2005) A mitochondrial half-size ABC transporter is involved in cadmium tolerance in Chlamydomonas reinhardtii. Plant Cell Environ 28(7):863–873

    Article  CAS  Google Scholar 

  • Hirschi KD, Zhen R-G, Cunningham KW, Rea PA, Fink GR (1996) CAX1, an H+/Ca2+ antiporter from Arabidopsis. Proc Natl Acad Sci U S A 93:8782–8786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco, altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Houtz RL, Nable RO, Cheniae GM (1988) Evidence for effects on the in vivo activity of ribulose-biphosphate carboxylase/oxygenase during development of Mn toxicity in tobacco. Plant Physiol 86:1143–1149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Humphries J, Stangoulis J, Graham R (2007) Manganese. In: Barker A, Pilbeam D (eds) Handbook of plant nutrition. Taylor and Francis, Boca Raton, pp 351–366

    Google Scholar 

  • Ishimaru Y, Takahashi R, Bashir K et al (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286

    Article  PubMed Central  PubMed  Google Scholar 

  • Lidon FC, Barreiro M, Ramalho J (2004) Manganese accumulation in rice: implications for photosynthetic functioning. J Plant Physiol 161:1235–1244

    Article  CAS  PubMed  Google Scholar 

  • Lindsay WL (1979) Solubilities of common zinc minerals in soils, chemical equilibria in soils. John Wiley and Sons, New York

    Google Scholar 

  • Lindsay WL (1981) Chemistry in soil environment. ASA, Madison

    Google Scholar 

  • Marshner H (1995) Mineral nutrition of higher plants. Academic, London, pp 313–323

    Book  Google Scholar 

  • Merchant S (2005) The light reactions: a guide to recent acquisition for the picture gallery. Plant Cell 17(3):648–663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Millaleo R, Reyes-Diaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10(4):470–481

    Article  Google Scholar 

  • Milner MJ, Seamon J, Craft F, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64(1):369–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mora M, Rosas A, Ribera A, Rengel R (2009) Differential tolerance to Mn toxicity in perennial ryegrass genotypes: involvement of antioxidative enzymes and root exudation of carboxylates. Plant Soil 320:79–89

    Article  CAS  Google Scholar 

  • Moroni J, Scott B, Wratten N (2003) Differential tolerance of high manganese among rapeseed genotypes. Plant Soil 253:507–519

    Article  CAS  Google Scholar 

  • Neumann G, Romheld V (2001) The release of root exudates as affected by the plants physiological status. In: Pinto R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 41–93

    Google Scholar 

  • Page V, Feller U (2005) Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Ann Bot 96:425–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Page V, Weisskopf L, Feller U (2006) Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. New Phytol 171:329–341

    Article  CAS  PubMed  Google Scholar 

  • Paulsen IT, Saier MH Jr (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103

    Article  CAS  PubMed  Google Scholar 

  • Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S (2008) Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiol 148:455–466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfeffer PE, Tu S, Gerasimowicz WV, Cavanaugh JR (1986) In vivo 3IP NMR studies of corn root tissue and its uptake of toxic metals. Plant Physiol 80:77–84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosas A, Rengel Z, Mora M (2007) Manganese supply and pH influence growth, carboxylate exudation and peroxidase activity of ryegrass and white clover. J Plant Nutr 30:253–270

    Article  CAS  Google Scholar 

  • Ryan P, Delhaize E, Jones D (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  CAS  PubMed  Google Scholar 

  • Sahu SK, Mitra GN (1997) Acid soils of India. Publication and Information Division, Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97:4991–4996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JAC, Hooykaas PJJ (1999) Over-expression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    Article  PubMed Central  PubMed  Google Scholar 

  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao H, Yin L, Xu X, Li T, Han Z (2008) The iron-regulated transporter, MbNRAMP1, isolated from Malus baccata is involved in Fe, Mn and Cd trafficking. Ann Bot 102:881–889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang et al (2007) Manganese uptake and transportation as well as antioxidant response to excess manganese in plants. College of Plant Science, Agricultural Division, Jilin University, Changchun 130062, China 2007 Dec, 33(6):480–488 (Article in Chinese, English Abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Mitra, G.N. (2015). Manganese (Mn) Uptake. In: Regulation of Nutrient Uptake by Plants. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2334-4_12

Download citation

Publish with us

Policies and ethics