Skip to main content

Abstract

Globally indigenous nitrogen in soil cannot meet the crop requirement at contemporary production levels. Synthetic nitrogenous fertilisers along with other nutrients have to be applied to sustain existing production and, in many countries, further increase crop production commensurate with their population growth. Nitrogen use efficiency of crops is abysmally low (25–50 %) under uncontrolled field conditions. This not only is an economic loss, but the unutilised nitrogen also causes environmental pollution.

Nitrogen is taken up by plants as NO3 and NH4 +. It has been recently found that uptake of both the forms is strictly under genetic control. There are high-affinity transporters, which carry the ions across the plasma membrane of root cells when their concentrations in the growth medium are low as well as low-affinity transporters when the concentrations are high. Many of these transporters have been characterised and mechanism of their action is known.

Biotechnological approach to improve nitrogen use efficiency includes overexpression of transporters, manipulation of genes involved in N-uptake, N-assimilation and N-translocation. Transgenic GDH-rice plants have been found to have larger number of tillers, spikelet numbers per panicle, higher biomass production, higher grain yield as well as higher NUE than the control plants. AlaAT transgenic rice shows improved NUE at medium and high N-supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anthony DM, Glass D, Britto TD, Kaiser BN, James R, Kinghorn JR, Kronzucker HJ, Anshuman A, Okamoto M, Rawat S, Siddiqi MY, Unkles SF, Vidmar JJ (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 53(370):855–864, Inorganic Nitrogen Assimilation Special Issue

    Article  Google Scholar 

  • Arak R, Hasegawa H (2006) Genes involved in high affinity nitrate transport during the period of nitrate induction. Breed Sci 56:295–302

    Article  Google Scholar 

  • Beatty PH, Carroll RT, Shrawat AK, Guevara D, Good AG (2013) Physiological analysis of nitrogen-efficient rice over-expressing alanine amino-transferase under different N regimes. Botany 91(12):866–883. doi:10.1139/cjb-2013-0171

    Article  CAS  Google Scholar 

  • Cai C, Zhao X-Q, Zhu Y-G, Li B, Tong Y-P, Li Z-S (2007) Regulation of the high-affinity nitrate transport system in wheat roots by exogenous abscisic acid and glutamine. J Integr Plant Biol 49(12):1719–1725

    Article  CAS  Google Scholar 

  • Caputo C, Fatta N, Barneix A (2001) The export of amino acids in the phloem is altered in wheat plants lacking the short arm of chromosome 7B. J Exp Bot 52:1761–1768

    Article  CAS  PubMed  Google Scholar 

  • Century KT, Reuber K, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chichkova SJ, Arellano CP, Vance CP, Herna’ndez G (2001) Transgenic tobacco plants that over express alfalfa NADH-glutamate synthase have higher carbon and nitrogen content. J Exp Biol 52:2079–2087

    CAS  Google Scholar 

  • Chopin F, Wirth J, Dorbe MF, Lejay L, Krapp A, Gojon A, Daniel-Vedele F (2007) The Arabidopsis nitrate transporter AtNRT2.1 is targeted to the root plasma membrane. Plant Physiol Biochem 45:630–635

    Article  CAS  PubMed  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci Rev 3(10):367–407

    Article  Google Scholar 

  • Crété P, Caboche M, Meyer C (1997) Nitrite reductase expression is regulated at the post-transcriptional level by the nitrogen source in Nicotiana plumbaginifolia and Arabidopsis thaliana. Plant J 11:625–634

    Article  PubMed  Google Scholar 

  • Dechorgnat J, Nguyen CT, Amengaud P, Jossier M, Diatlof E, Filleur S, Daniel-Vedele F (2011) From the soil to the seeds: the long journey of nitrate in plants. J Exp Bot 62(4):1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Dejannane S, Chauvin JE, Quillere I, Meyer C, Chupeau Y (2002) Introduction and expression of a deregulated tobacco nitrate reductase gene in potato lead to highly reduced nitrate levels in transgenic tubers. Transgenic Res 11:175–184

    Article  Google Scholar 

  • Duan YH, Zhang YL, Shen QR, Wang SW (2006) Nitrate effect on rice growth and nitrogen absorption and assimilation at different growth stages. Pedosphere 16:707–717

    Article  Google Scholar 

  • Duan YH, Zhang YL, Ye LT, Fan XR, Xu GH, Shen QR (2007) Responses of rice cultivars with different nitrogen use efficiency to partial replaced nitrate nutrition. Ann Bot 99:1153–1160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan X, Xie D, Chan J, Lu H, Xu Y, Ma C, Xu G (2014) Over expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply. Plant Sci 227:1–11

    Article  CAS  PubMed  Google Scholar 

  • Fei H, Chaillou S, Mahon JD, Vessey JK (2003) Over expression of a soybean cytosolic glutamine synthetase gene linked to organ-specific promoters in pea plants grown in different concentrations of nitrate. Planta 216:467–474

    CAS  PubMed  Google Scholar 

  • Feng H, Yan M, Li B, Shen Q, Miller AJ, Xu G (2011) Spatial expression and regulation of rice high affinity nitrate transporters by nitrogen and carbon status. J Exp Bot 62:2319–2332

    Article  CAS  PubMed  Google Scholar 

  • Filleur S, Dorbe MF, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F (2001) An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett 489:220–224

    Article  CAS  PubMed  Google Scholar 

  • Forde BG, Walch-Liu P (2009) Nitrate and glutamate as environmental cues for behavioural responses in plant roots. Plant Cell Environ 32(6):682–693

    Article  CAS  PubMed  Google Scholar 

  • Gallais A, Hirel B (2004) An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot 55(396):295–306.

    Article  CAS  PubMed  Google Scholar 

  • Gazzarini S, Lejay L, Gojon A, Ninnemann O, Frommer WB (1999) Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–947

    Article  Google Scholar 

  • Glass ADM (2003) Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Crit Rev Plant Sci 22(5):453–470

    Article  CAS  Google Scholar 

  • Gojon A, Krouk G, Perrine-Walker F, Laugier E (2011) Nitrate transceptor(s) in plants. J Exp Bot 62:2299–2308. doi:10.1093/jxb/erq419

    Article  CAS  PubMed  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9(12):597–605

    Article  CAS  PubMed  Google Scholar 

  • Good AG, Johnson SJ, Pauw MD, Carroll RT, Savidov N, Vidmar J, Lu Z, Taylor G, Stroeher V (2007) Engineering nitrogen use efficiency with alanine aminotransferase. Can J Bot 85(3):252–262. doi:10.1139/B07-019

    Article  CAS  Google Scholar 

  • Gregersen PL, Holm PB, Krupinska K (2008) Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biol 10(Suppl 1):37–49

    Article  CAS  PubMed  Google Scholar 

  • Gu R, Duan F, An X, Zhang F, von Wiren N, Yuan L (2013) Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.). Plant Cell Physiol 54(9):1515–1524

    Article  CAS  PubMed  Google Scholar 

  • Gutterson N, Zhang JZ (2004) Genomics applications to biotech traits: a revolution in progress? Curr Opin Plant Biol 7:226–230

    Article  CAS  PubMed  Google Scholar 

  • Habash D, Massiah A, Rong H, Wallsgrove R, Leigh R (2001) The role of cytosolic glutamine synthetase in wheat. Ann Appl Biol 138:83–89

    Article  CAS  Google Scholar 

  • Habash D, Bernard S, Schondelmaier J, Weyen J, Quarrie S (2007) The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield. Theor Appl Genet 114:403–419

    Article  CAS  PubMed  Google Scholar 

  • Hirel B, Bertin P, Quillere I et al (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125:1258–1270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  CAS  PubMed  Google Scholar 

  • Ho C-H, Lin S-H, Hu H-C, Tsay Y-F (2009) CHL1 functions as a nitrate sensor in plants. Cell 138(6):1184–1194

    Article  CAS  PubMed  Google Scholar 

  • Hoque MS, Masle J, Udvardi MK, Ryan PR, Upadhyaya NM (2006) Over-expression of the rice OsAMT1-1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammonium nutrition. Funct Plant Biol 33(2):153–163. doi:10.1071/FP05165

    Article  CAS  Google Scholar 

  • Huber SC, MacKintosh C, Kaiser WM (2002) Metabolic enzymes as targets for 14-3-3 proteins. Plant Mol Biol 50(6):1053–1063

    Article  CAS  PubMed  Google Scholar 

  • Ishiyama K, Inoue E, Watanabe-Takahashi A, Obara M, Yamaya T, Takahashi H (2004) Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. J Biol Chem 279:16598–16605

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Murakami S, Yamamoto Y, Chatani H, Kondo Y, Nakano T (2004) The DNA-binding protease, CND41, and the degradation of ribulose-1,5-bisphosphate carboxylase ⁄ oxygenase in senescent leaves of tobacco. Planta 220:97–104

    Article  CAS  PubMed  Google Scholar 

  • Kichey T, Heumez E, Pocholle D, Pageau K, Vanacker H, Dubois F, LeGouis J, Hirel B (2006) Combined agronomic and physiological aspects of nitrogen management in wheat highlight a central role for glutamine synthetase. New Phytol 169:265–278

    Article  CAS  PubMed  Google Scholar 

  • King BJ, Siddiqi MY, Ruth TJ, Warner RH, Glass ADM (1993) Feedback regulation of nitrate influx in barley roots by nitrate, nitrite, and ammonium. Plant Physiol 102:1279–1286

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kirk GJD, Kronzucker HJ (2005) The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modeling study. Ann Bot 96:639–646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kronzucker HJ, Schjoerring JK, Erner Y, Kirk GJD, Siddiqi MJ, Glass ADM (1998) Dynamic interactions between root NH4 + influx and long-distance N translocation in rice: insights into feedback processes. Plant Cell Physiol 39:1287–1293

    Article  CAS  Google Scholar 

  • Kumar A, Kaiser BN, Siddiqi MY, Glass A (2006) Functional characterization of OsAMT1.1 over-expression lines of rice (Oryza sativa). Funct Plant Biol 33(4):339–346

    Article  CAS  Google Scholar 

  • Kurai T, Wakayama M, Aoki N, Ohsugi R (2009) Over expression of ZmDof1 in rice alters carbohydrate and nitrogen partitioning. Plant Biol, Abs # P51014

    Google Scholar 

  • Lansing AJ, Franceschi VR (2000) The para-veinal mesophyll: a specialised path for intermediary transfer of assimilates in legume leaves. Aust J Plant Physiol 27:757–767

    CAS  Google Scholar 

  • Li W, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, Glass ADM (2007) Dissection of the AtNRT2.1, AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiol 143:425–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Y, Rong X, Fan Q, Shen R (2008) The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Plant Cell Environ 31(1):73–85

    PubMed  Google Scholar 

  • Li S, Qian Q, FU D, Meng DZ, Kyozuka J, Maekawa M, Zhu X, Zhang J, Wang LY (2009) Short Panicle 1encodes a putative PTR family transporter and determines rice panicle size. Plant J 58:592–605

    Article  CAS  PubMed  Google Scholar 

  • Lijavetzky D, Carbonero P, Vicente-Carbajosa J (2003) Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol Biol 3:17

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin CHM, Koh S, Stacey G, Yu SM, Lin TY, Tsay YF (2000) Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice. Plant Physiol 122:379–388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu KH, Huang CY, Tsay YF (1999) CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11:865–874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loque D, Lalonde S, Looger LL, von Wiren N, Frommer WB (2007) A cytosolic trans-activation domain essential for ammonium uptake. Nature 446(7132):195–198

    Article  CAS  PubMed  Google Scholar 

  • Ludewig U, von Wiren N, Frommer WB (2002) Uniport of NH4+ by the root hair plasma membrane ammonium transporter LeAMT1;1. J Biol Chem 277(16):13548–13555

    Article  CAS  PubMed  Google Scholar 

  • Mae T, Makino A, Ohira K (1983) Changes in the amounts of ribulose bisphosphate carboxylase synthesized and degraded during the life span of a rice leaf (Oryza sativa L.). Plant Cell Physiol 24:1079–1086

    CAS  Google Scholar 

  • Malagoli P, Laine P, Deunff EL, Rossato L, Ney B, Ourry A (2004) Modeling nitrogen uptake in oil seed rape Cv. Capitol during a growth cycle using influx kinetics of root nitrate transport system and field experimental data. Plant Physiol 134(1):388–400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Terce-Laforgue T, Quillere I, Coque M, Gallais A, Gonzalez-Moro M, Bethencourt L, Habash D, Lea P, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards K, Hirel B (2006) Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 18:3252–3274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M (2008) Leaf nitrogen remobilisation for plant development and grain filling. Plant Biol 10(Suppl 1):23–36

    Article  CAS  PubMed  Google Scholar 

  • Meyer C, Stitt M (2001) Nitrate reduction and signaling. In: Morot-Gaudry JF, Lea PJ (eds) Plant nitrogen. Springer, Berlin, pp 37–59

    Chapter  Google Scholar 

  • Miflin B, Habash D (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 53:979–987

    Article  CAS  PubMed  Google Scholar 

  • Miller AJ, Smith SJ (1996) Nitrate transport and compartmentation in cereal root cells. J Exp Bot 47:843–854

    Article  CAS  Google Scholar 

  • Miller AJ, Fan X, Shen Q, Smith SJ (2008) Amino acids and nitrate as signals for the regulation of nitrogen acquisition. J Exp Bot 59(1):111–119

    Article  CAS  PubMed  Google Scholar 

  • Naohiro A, Tomohito E, Akira K, Tomomi A, Masataka W, Haruto S, Ryu O (2009) Genetic modification of nitrogen use efficiency in potato and rice by introducing fungal glutamate dehydrogenase, American Society of Plant Biologists. Plant Biol, 2009, Honolulu, Hawaii, Abs # P39004

    Google Scholar 

  • Obara M, Kajiura M, Fukuta Y et al (2001) Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.). J Exp Bot 52:1209–1217

    Article  CAS  PubMed  Google Scholar 

  • Okamoto M, Kumar A, Li W, Wang Y, Sidiqi MY, Crawford NM, Glass AD (2006) High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. Plant Physiol 142:1304–1317

    Article  Google Scholar 

  • Oliveira IC, Brears T, Knight TJ, Clark A, Coruzzi GM (2002) Overexpression of cytosolic glutamate synthetase, relation to nitrogen, light, and photorespiration. Plant Physiol 129:1170–1180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Orsel M, Filleur S, Fraisier V, Daniel-Vedele F (2002) Nitrate transport in plants: which gene and which control? J Exp Bot 53(370):825–833

    Article  CAS  PubMed  Google Scholar 

  • Orsel M, Eulenburg K, Krapp A, Daniel-Vedele F (2004) Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restricts growth at low external nitrate concentration. Planta 219:714–721

    Article  CAS  PubMed  Google Scholar 

  • Orsel M, Chopin F, Leleu O, Smith SJ, Krapp A, Daniel-Vedele F, Miller AJ (2006) Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis: physiology and protein–protein interaction. Plant Physiol 142:1304–1317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ortega JL, Temple SJ, Sengupta-Gopalan C (2001) Constitutive overexpression of cytosolic glutamine synthetase (GS1) gene in transgenic alfalfa demonstrates that GS1 be regulated at the level of RNA stability and protein turnover. Plant Physiol 126:109–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194–3205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F et al (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Provan F, Aksland LM, Meyer C, Lillo C (2000) Deletion of the nitrate reductase N-terminal domain still allows binding of 14-3-3 proteins but affects their inhibitory properties. Plant Physiol 123:757–764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111–119

    Article  CAS  PubMed  Google Scholar 

  • Qu LJ, Zhu YX (2006) Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. Curr Opin Plant Biol 9:544–549

    Article  CAS  PubMed  Google Scholar 

  • Quaggiotti S, Ruperti B, Borsa P, Destro T, Malagoli M (2003) Expression of a putative high‐affinity NO3– transporter and of an H+−ATPase in relation to whole plant nitrate transport physiology in two maize genotypes differently responsive to low nitrogen availability. J Exp Bot 54(384):1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Rentsch D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581:2281–2289

    Article  CAS  PubMed  Google Scholar 

  • Riechmann JL (2002) Transcriptional regulation: a genomic overview. In: Somerville CR, Meyerowitz EM (eds) The arabidopsis book. American Society of Plant Biologists, Rockville. doi:10.1199/tab.0085, http://www.aspb.org/publications/arabidopsis/

  • Riechmann JL, Ratcliffe OJ (2000) A genomic perspective on plant transcription factors. Curr Opin Plant Biol 3:423–434

    Article  CAS  PubMed  Google Scholar 

  • Rolletschek H, Hosein F, Miranda M, Heim U, Götz KP, Schlereth A, Borisjuk L, Saalbach I, Wobus U, Weber H (2005) Ectopic expression of an amino acid transporter (VfAAP1) in seeds of Vicia narbonensis and pea increases storage proteins. Plant Physiol 137:1236–1249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salmeron J, Herrera-Estrella LR (2006) Fast-forward genomics for improved crop production. Curr Opin Plant Biol 9:177–179

    Article  Google Scholar 

  • Schjoerring J, Kyllingsbaek A, Mortensen J, Byskov-Nielsen S (1993) Field investigations of ammonia exchange between barley plants and the atmosphere, I: concentration profiles and flux densities of ammonia. Plant Cell Environ 16:161–167

    Article  CAS  Google Scholar 

  • Shaw L (2009) The Dof transcription factor family in Triticum aestivum. PhD thesis, School of Biological Sciences, The University of Queensland

    Google Scholar 

  • Shrawat AK, Carroll RT, DePauw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. J Plant Biotechnol 6(7):722–732

    Article  CAS  Google Scholar 

  • Siddiqi MY, Glass ADM, Ruth TJ, Rufty TW Jr (1990) Studies of the uptake of nitrate in barley, I. Kinetics of I3NO3- influx. Plant Physiol 93:1426–1432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sonoda Y, Ikeda A, Saiki S, von Wiren N, Yamaya T, Yamaguchi J (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1;1–1;3) in rice. Plant Cell Physiol 44(7):726–734

    Article  CAS  PubMed  Google Scholar 

  • Sperandio MVL, Santos LA, de Araujo OJL, Braga RP, Coelho CP, Nogueira EM, Fernandes MS, de Souza SR (2014) Response of nitrate transporters and PM H+−ATPase expression to nitrogen flush on two upland rice varieties contrasting in nitrate uptake kinetics. Aust J Crop Sci 8(4):568–576

    CAS  Google Scholar 

  • Suenaga A, Moriya K, Sonoda Y, Ikeda A, von Wiren N, Hayakawa T et al (2003) Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol 44:206–211

    Article  CAS  PubMed  Google Scholar 

  • Tilsner J, Kassner N, Struck C, Lohaus G (2005) Amino acid contents and transport in oilseed rape (Brassica napus L.) under different nitrogen conditions. Planta 221:328–338

    Article  CAS  PubMed  Google Scholar 

  • Tong Y, Zhou JJ, Li Z, Miller AJ (2005) A two-component high-affinity nitrate uptake system in barley. Plant J 41:442–450

    Article  CAS  PubMed  Google Scholar 

  • Trevisan S, Borsa P, Botton A, Varotto S, Malagoli M, Ruperti B, Quaggiotti S (2008) Expression of two maize putative nitrate transporters in response to nitrate and sugar availability. Plant Biol (Stuttg) 10:462–475

    Article  CAS  Google Scholar 

  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300

    Article  CAS  PubMed  Google Scholar 

  • Vanlerberghe GC, Turpin DH (1990) Anaerobic metabolism in the N-limited green algae Selenastrum minutum, II. Assimilation of ammonium by anaerobic cells. Plant Physiol 94:1124–1130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walch-Liu P, Forde BG (2008) Nitrate signaling mediated by the NRT1.1 nitrate transporter antagonizes L-glutamate-induced changes in root architecture. Plant J 54(5):820–828. Epub 2008 Feb 7

    Google Scholar 

  • Wang Y-H, Garvin DF, Kochian LV (2001) Nitrate-induced genes in tomato roots Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol 127:345–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang R, Xing X, Wang Y, Tran A, Crawford NM (2009) A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1. Plant Physiol 151(1):472–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wirth J, Chopin F, Santoni V, Viennois G, Tillard P, Krapp A, Lejay L, Daniel-Vedele F, Gojon A (2007) Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. J Biol Chem 282:23541–23552

    Article  CAS  PubMed  Google Scholar 

  • Yamaya T, Obara M, Nakajima H, Sasaki S, Hayakawa T, Sato T (2002) Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot 53:917–925

    Article  CAS  PubMed  Google Scholar 

  • Yan M, Fan X, Feng H, Miller AJ, Shen Q, Xu G (2011) Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ 34:1360–1372

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S (2001) Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J 21:281–288. doi:10.1046/j.1365-313x.2000.00685

    Article  Google Scholar 

  • Yanagisawa S (2002) The Dof family of plant transcription factors. Trends Plant Sci 7(12):555–560

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004) Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci U S A 101:7833–7838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yong Z, Kotur Z, Glass ADM (2010) Characterization of an intact two-component high-affinity nitrate transporter from Arabidopsis roots. Plant J 63:739–748

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Gu R, Xuan Y, Smith-Valle E, Loque D, Frommer WB, von Wiren N (2013) Allosteric regulation of transport activity by heterodimerisation of Arabidopsis ammonium transporter complexes in vivo. Plant Cell 25(3):974–984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Mitra, G.N. (2015). Nitrogen (N) Uptake. In: Regulation of Nutrient Uptake by Plants. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2334-4_2

Download citation

Publish with us

Policies and ethics