Skip to main content

Green Synthesis of Polymer Composites/Nanocomposites Using Vegetable Oil

  • Chapter
  • First Online:
Eco-friendly Polymer Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 75))

Abstract

Vegetable triglycerides are among the first renewable resources exploited by man primarily in coating applications because their unsaturated varieties polymerize as thin films in the presence of atmospheric oxygen. Nowadays, use of the vegetable oils is spotlight of the chemical industries and as they are using these as a renewable platform for further ability. In order to overcome disadvantages such as poor mechanical properties of polymers from renewable resources, or to offset the high price of synthetic biodegradable polymers, various blends and composites have been developed over the last decade. The progress of blends from three kinds of polymers from renewable resources (1) natural polymers, such as starch, protein, and cellulose; (2) synthetic polymers from natural monomers, such as polylactic acid; and (3) polymers from microbial fermentation. In this chapter we have discussed about the different types of polymer composites obtained from the vegetable oil and applications of the polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arrakhiz FZ, Achaby ME, Malha M, Bensalah MO, Fassi F, Bouhfid R, Benmoussa K, Qaiss A (2013) Mechanical and thermal properties of natural fibers reinforced polymer composites: doum/low density polyethylene. Mater Des 43:200–205

    Article  CAS  Google Scholar 

  • Baillie C (2004) Green composites: polymer composites and the environment. Woodhead Publishing

    Google Scholar 

  • Bantchev GB, Kenar JA, Biresaw G, Han MG (2009) Free radical addition of butanethiol to vegetable oil double bonds. J Agri Food Chem 57:1282–1290

    Article  CAS  Google Scholar 

  • Barnwal BK, Sharma MP (2005) Prospects of biodiesel production from vegetable oils in India. Renew Sustain Energy Rev 9:363–378

    Article  Google Scholar 

  • Beauty D, Pronobesh C, Manabendra M, Brigitte V, Niranjan K (2013) Bio-based biodegradable and biocompatible hyperbranched polyurethane: a scaffold for tissue engineering. MacromolBiosci 13:126–139

    Google Scholar 

  • Belgacem MN, Gandini A (2008) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam. ISBN 978-0-08-045316-3

    Google Scholar 

  • Biermann U, Friedt W, Lang S, Luhs W, Machmuller G, Metzger JO, Klass MR, Schafer HJ, Schneider MP (2000) New syntheses with oils and fats as renewable raw materials for the chemical industry. Angew Chem Int Ed 39:2206–2224

    Article  CAS  Google Scholar 

  • Bussell GW (1974) US Patent, 3,855,163

    Google Scholar 

  • Cathryn AS, Jeffery YS, Yadong W, William CF, Robert SL, Joseph PV, Tessa AH (2005) Biocompatibility analysis of poly (glycerol sebacate) as a nerve guide material. Biomater 26:5454–5464

    Google Scholar 

  • Çayl G, Kusefoglu S (2008) Biobasedpolyisocyanates from plant oil triglycerides: synthesis, polymerization, and characterization. J Appl Polym Sci 109:2948–2955

    Article  Google Scholar 

  • Chen Z, Chisholm BJ, Patani R, Wu JF, Fernando S, Jogodzinski K (2010) Soybased UV-curable thiol-ene coatings. J Coat Technol Res 7:603–613

    Article  CAS  Google Scholar 

  • Cinita M, Diego M, Kleber RP, Mirta IA, Mirna AM (2014) Nanocomposites with superparamagneticbehavior based on a vegetable oil and magnetite nanoparticles. Euro Poly J 53:90–99

    Article  Google Scholar 

  • Cunningham A, Yapp A (1974) US Patent, 3,827,993

    Google Scholar 

  • Dave AM, Mehta MH, Aminabhavi TM, Kulkarni AR, Soppimath KS (1999) A review on controlled release of nitrogen fertilizers through polymeric membrane devices. Polym-plast technol 38:675–711

    Article  CAS  Google Scholar 

  • Delara M, Jian Y, Karen YL, Antonio RW, Guillermo AA (2006) Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. Biomater 27:4315–4324

    Article  Google Scholar 

  • Dyer JM, Stymme S, Green AG, Carlsson AS (2008) High-value oils from plants. Plant J 54:640–655

    Article  CAS  Google Scholar 

  • Force CG, Starr FS (1988) US Patent, 4,740,367

    Google Scholar 

  • Frederick T, Wallenberger T, Norman E (2004) Natural fibers, plastics and composites. Springer

    Google Scholar 

  • Friedrich K, Lu Z, Hager AM (1995) Recent advances in polymer composites’ tribology. Wear 190:139–144

    Article  CAS  Google Scholar 

  • Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558

    Article  CAS  Google Scholar 

  • Gerard L, Juan CR, Marina G, Virginia C (2013) Renewable polymeric materials from vegetable oils: a perspective. doi:10.1016/j.mattod.2013.08.016

  • Gonzalez-Paz R, Lluch C, Lligadas G, Ronda J, Galia M, Cadiz V (2011) A green approach toward oleic- and undecylenic acid-derived polyurethanes. J Polym Sci Pol Chem 49:2407–2416

    Article  CAS  Google Scholar 

  • Gorkum R, Bouwman E (2005) The oxidative drying of alkyd paint catalyzed by metal complexes. Coord Chem Rev 249:1709–1728

    Article  Google Scholar 

  • Guner FS, Yagci Y, Erciyes AT (2006) Polymers from triglycerides oils. Prog Poly Sci 31:633–670

    Article  Google Scholar 

  • Hodakowski LE, Osborn CL, Harris EB (1975) US Patent, 4,119,640

    Google Scholar 

  • Hojabri L, Kong X, Narine SS (2009) Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization. Biomacromolecules 10:884–891

    Article  CAS  Google Scholar 

  • Hojabri L, Kong X, Narine SS (2010a) Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane. J Polym Sci Pol Chem 48:3302–3310

    Article  CAS  Google Scholar 

  • Hojabri L, Kong X, Narine SS (2010b) Functional thermoplastics from linear diols and diisocyanates produced entirely from renewable lipid sources. Biomacromolecules 11:911–918

    Article  CAS  Google Scholar 

  • Johannes TP, Derksen F, Petrus C, Peter K (1996) Renewable resources in coatings technology: a review. Progress Org Coat 27:45–53

    Article  Google Scholar 

  • Johnson RW, Fritz EE (1989) Fatty acids in industry. New York

    Google Scholar 

  • Kymakis E, Alexandou I, Amaratunga GAG (2002) Single- walled carbon nanotube- polymer composites: electrical optical and structural investigations. Synth Met 127:50–62

    Article  Google Scholar 

  • Lamba NM, Woodhouse KA, Cooper SL (1998) Polyurethanes in biomedical applications. CRC Press, Boca Raton, FL

    Google Scholar 

  • Lin M-F, Thakur VK, Tan EJ, Lee PS (2011a) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504

    Google Scholar 

  • Lin M-F, Thakur VK, Tan EJ, Lee PS (2011b) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578

    Google Scholar 

  • Lluch C, Ronda JC, Galia M, Lligadas G, Cadiz V (2010) Rapid approach to biobased telechelics through two one-pot thiol—ene click reactions. Bio mac mol 11:1646–1653

    CAS  Google Scholar 

  • Lu Y, Larock RC (2009) Novel polymeric materials from vegetable oils and vinyl monomers: preparation, properties, and applications. Chem Sus Chem 2:136–147

    Article  CAS  Google Scholar 

  • Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Sus Rev 36:1788–1802

    Article  CAS  Google Scholar 

  • Mikitaev A, Alexey KR, Elena GN (2009) Polymer nanocomposites: variety of structural forms and applications. Nova Science Publishers, 319 pp

    Google Scholar 

  • Mohammad YS, Sharif A (2012) Waterborne vegetable oil epoxy coatings: Preparation and characterization. Prog Org Coat 75:248–252

    Google Scholar 

  • More AS, Lebarbé T, Maisonneuve L, Gadenne B, Alfos C, Cramail H (2013) Novel fatty acid based di-isocyanates towards the synthesis of thermoplastic polyurethanes. Eur Polym J 49:823–833

    Article  CAS  Google Scholar 

  • Mosiewicki MA, Aranguren MI (2013) A short review on novel biocomposites based on plant oil Precursors. Eur Polym J 44:1243–1256

    Article  Google Scholar 

  • Norris FA (1996) Extraction of fats and oils. Bailey’s industrial oil and fat products. vol 2. New York

    Google Scholar 

  • Okada A, Usuki A (1995) The chemistry of polymer-clay hybrids. Mat Sci Engg C3:109–115

    Article  CAS  Google Scholar 

  • Reis JML, Mota EP (2014) Mechanical behaviour of piassava fiber reinforced castor oil polymer mortars. Comp Strut 111:468–472

    Article  Google Scholar 

  • Salunkhe DK, Chavan JK, Adsule RN, Kadam SS (1992) World oilseeds: chemistry, technology and utilization. Van Nostrand Reinhold, New York

    Google Scholar 

  • Seniha GN, Yusuf Y, Tuncer E (2014) Polymers from triglyceride oils. Sep Purify Technol 133:260–275

    Article  Google Scholar 

  • Sharma V, Kundu PP (2006) Addition polymers from natural oils—a review. Prog Poly Sci 31:983–1008

    Article  CAS  Google Scholar 

  • Shida M, Lijing S, Ping W, Ruina L, Zhiguo S, Songping Z (2012) Soybean oil-based polyurethane networks as candidate biomaterials: Synthesis and biocompatibility. Euro J Lipid Sci Tech 114:1165–1174

    Article  Google Scholar 

  • Shida M, Ping W, Zhiguo S, Songping Z (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 10:1692–1704

    Article  Google Scholar 

  • Singha AS, Thakur VK (2008a) Saccaharum cilliare fiber reinforced polymer composites. E-J Chem 5(4):782–791

    Google Scholar 

  • Singha AS, Thakur VK (2008b) Fabrication and study of lignocellulosic hibiscus sabdariffa fiber reinforced polymer composites. Bioresources 3:1173–1186

    Google Scholar 

  • Singha AS, Thakur VK (2008c) Synthesis and characterization of pine needles reinforced rf matrix based biocomposites. E-J Chem 5:1055–1062

    Google Scholar 

  • Singha AS, Thakur VK (2009a) Fabrication and characterization of H. Sabdariffa fiber-reinforced green polymer composites. Polym-Plast Technol Eng 48:482–487

    Google Scholar 

  • Singha AS, Thakur VK (2009b) Fabrication and characterization of S. Cilliare fibre reinforced polymer composites. Bull Mater Sci 32:49–58

    Google Scholar 

  • Singha AS, Thakur VK (2009c) Synthesis, characterisation and analysis of hibiscus sabdariffa fibre reinforced polymer matrix based composites. Polym Polym Compos 17:189–194

    Google Scholar 

  • Singha AS, Thakur VK (2009d) Grewia optiva fiber reinforced novel, low cost polymer composites. J Chem 6:71–76

    Google Scholar 

  • Singha AS, Thakur VK (2009e) Physical, chemical and mechanical properties of hibiscus sabdariffa fiber/polymer composite. Int J Polym Mater 58:217–228

    Google Scholar 

  • Singha A S, Thakur VK (2010a) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Charact 15(2):87–97

    Google Scholar 

  • Singha AS, Thakur VK (2010b) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Compos 29:700–709

    Google Scholar 

  • Singha AS, Thakur VK, Mehta IK, Shama A, Khanna AJ, Rana RK, Rana AK (2009) Surface-modified hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. Int J Polym Anal Charact 14(8):695–711

    Article  CAS  Google Scholar 

  • Sinha VR, Kumria R (2001) Polysaccharides in colon-specific drug delivery. Int J Pharm 224:19–38

    Google Scholar 

  • Stephen R, William LN, Santiago R, Sunita S, Jing Y, Henry K, Robert L, Michael JY (2009) Engineering retinal progenitor cell and scrollable poly (glycerol-sebacate) composites for expansion and subretinal transplantation. Biomater 30:3405–3414

    Article  Google Scholar 

  • Thakur VK, Thakur MK (2014a) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652

    Google Scholar 

  • Thakur VK, Thakur MK (2014b) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Cleaner Prod 82:1–15

    Google Scholar 

  • Thakur VK, Thakur MK (2014c) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    Google Scholar 

  • Thakur VK, Singha AS, Kaur I, Nagarajarao RP, Liping Y (2010a) Silane functionalization of Saccaharum cilliare fibers: thermal, morphological, and physicochemical study. Int J Polym Anal Charact 15(7):397–414

    Google Scholar 

  • Thakur VK, Singha AS, Mehta I K (2010b) Renewable resource-based green polymer composites: analysis and characterization. Int J Polym Anal Charact 15(3):137–146

    Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012a) In air graft copolymerization of ethyl acrylate onto natural cellulosic polymers. Int J Polym Anal Charact 17(1):48–60

    Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012b) Surface modification of natural polymers to impart low water absorbency. Int J Polym Anal Charact 17:133–143

    Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012c) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421

    Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012d) Graft copolymerization of methyl acrylate onto cellulosic biofibers: synthesis, characterization and applications. J Polym Environ 20:164–174

    Google Scholar 

  • Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014a) PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv 4:18240–18249

    Google Scholar 

  • Thakur VK, Grewell D, Thunga M, Kessler MR (2014b) Novel composites from eco-friendly soy flour/SBS triblock copolymer. Macromol Mater Eng 299:953–958

    Google Scholar 

  • Thakur VK, Vennerberg D, Kessler MR (2014c) Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl Mater Interfaces 6:9349–9356

    Google Scholar 

  • Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014d) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684

    Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2014e) Review: raw natural fiber–based polymer composites. Int J Polym Anal Charact 19(3):256–271

    Google Scholar 

  • Thakur VK, Thakur MK, Raghavan P, Kessler M R (2014f) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092

    Google Scholar 

  • Trecker DJ, Borden GW, Smith OW (1976) US Patent, 3,931,075

    Google Scholar 

  • Turunc O, Meier MA (2010) Fatty acid derived monomers and related polymers via thiol-ene (Click) additions. Macromol Rapid Commun 31:1822–1826

    Article  Google Scholar 

  • Vaidya R (2012) International conference on environmental. Biomed Biotech 41:55

    Google Scholar 

  • Wang L, Wang T (2007) Chemical modification of partially hydrogenated vegetable oil to improve its functional properties for candles. J American Oil Chem Soc 84:1149–1159

    Article  CAS  Google Scholar 

  • Williams CK, Hillmyer MA (2008) Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym Rev 48:1–10

    Google Scholar 

  • Xia Y, Larock RC (2010) Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem 1893–1909

    Google Scholar 

  • Yongshang L, Richard CL (2007) New hybrid latexes from a soybean oil-based waterborne polyurethane and acrylics via emulsion polymerization. Biomacro 8:3108–3144

    Article  Google Scholar 

  • Zdrahala RJ, Zdrahala IJ (1999) Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J Biomater Appl 14:67–90

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvaraj Mohana Roopan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Roopan, S.M., Madhumitha, G. (2015). Green Synthesis of Polymer Composites/Nanocomposites Using Vegetable Oil. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 75. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2470-9_16

Download citation

Publish with us

Policies and ethics