Skip to main content

Formulations of Plant Growth-Promoting Microbes for Field Applications

  • Chapter
  • First Online:
Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

Development of a plant growth-promoting (PGP) microbe needs several steps starting with isolation of a pure culture, screening of its PGP or antagonistic traits by means of different efficacy bioassays performed in vitro, in vivo or in trials under greenhouse and/or field conditions. In order to maximize the potential of an efficient PGP microbe, it is essential to optimize mass multiplication protocols that promote product quality and quantity and a product formulation that enhances bioactivity, preserves shelf life and aids product delivery. Selection of formulation is very crucial as it can determine the success or failure of a PGP microbe. A good carrier material should be able to deliver the right number of viable cells in good physiological conditions, easy to use and economically affordable by the farmers. Several carrier materials have been used in formulation that include peat, talc, charcoal, cellulose powder, farm yard manure, vermicompost and compost, lignite, bagasse and press mud. Each formulation has its advantages and disadvantages but the peat based carrier material is widely used in different part of the world. This chapter gives a comprehensive analysis of different formulations and the quality of inoculants available in the market, with a case study conducted in five-states of India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambardar VK, Sood AK (2010) Suitability of different growth substrate for mass multiplication of bacterial antagonists. Indian Phytopathol 63:380–383

    Google Scholar 

  • Anitha A, Rabeeth M (2009) Control of Fusarium wilt of tomato by bio-formulation of Streptomyces griseus in greenhouse condition. Afr J Basic Appl Sci 1:9–14

    Google Scholar 

  • Ardakani SS, Heydari A, Khorasani N, Arjmandi R (2010) Development of new bio-formulations of Pseudomonas fluorescens and evaluation of these products against damping-off of cotton seedlings. J Plant Pathol 92:83–88

    Google Scholar 

  • Arora NK, Khare E, Naraian R, Maheswari DK (2008) Saw-dust as a superior carrier for production of multipurpose bio-inoculant using plant growth promoting rhizobial and Pseudonmonad strains and their impact on productivity of Trifolium repnse. Curr Sci 95:90–94

    Google Scholar 

  • Arora NK, Kumar V, Maheswari DK (2001) Constraints, development and future of the inoculants with special reference to rhizobial inoculants. In: Maheswari DK, Dubey RC (eds) Innovative Approaches in Microbiology. Singh and Singh, Dehradun, pp 241–245

    Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998─2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Bashan Y, Hernandez JP, Levya LA, Bacilio M (2002) Alginate micro-beads as inoculant carriers for plant growth-promoting bacteria. Biol Fertil Soils 35:359–368

    Article  Google Scholar 

  • Brockwell J, Bottomley PJ (1995) Recent advances in inoculant technology and prospectus for the future. Soil Biol Biochem 27:683–687

    Article  CAS  Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: A review. J Ind Microbiol 16:17–101

    Article  Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1997) Survival and activity of lac-lux marked Pseudomonas aeruginosa UG2Lr cells in encapsulated K-caragreenan over 4 years at 4 oÇ. J Microbiol Methodol 30:167–170

    Article  CAS  Google Scholar 

  • Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230:21–30

    Article  CAS  Google Scholar 

  • Chakraborty U, Chakraborty BN, Basnet M, Chakraborty AP (2009) Evaluation of Orchrobactrum anthropi TRS-2 and its talc-based formulation for enhancement of growth of tea plants and management of brown root rot disease. J Appl Microbiol 107:625–634

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty U, Chakraborty BN, Chakraborty AP, Sunar K, Dey PL (2013) Plant growth-promoting rhizobacteria mediated improvement of health status of tea plants. Indian J Biotechnol 12:20–31

    CAS  Google Scholar 

  • Cho C, Lee W (1999) Formulation of a biocontrol agent by entrapping biomass of Trichoderma viridi in gluten matrix. J Biosci Bioeng 87:822–824

    Article  CAS  PubMed  Google Scholar 

  • da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in bacteria and archaea. Adv Biochem Eng Biotechnol 61:117–153

    PubMed  Google Scholar 

  • Dekkers LC, Mulders IH, Phoelich CC, Chin-A-Woeng TFC, Wijfjes AH, Lugtenberg BJJ (2000) The sss colonization gene of the tomato Fusarium oxysporum f. sp. radices-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild type Pseudomonas spp. bacteria. Mol Plant Microbe Interact 13:1177–1183

    Article  CAS  PubMed  Google Scholar 

  • Deaker R, Kecskés ML, Rose MT, Amprayn K, Ganisan K, Tran TKC, Vu TN, Phan TC, Hien NT and Kennedy IR (2011) Practical methods for the quality control of inoculant bio-fertilisers. Monograph Series No.147. Australian Centre for International Agricultural Research, Canberra, p 101

    Google Scholar 

  • Diaz-Zorita M, Fernandez-Canigia M (2009) Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. Eur J Soil Biol 45:3–11

    Article  Google Scholar 

  • Dwivedi J and Chauhan R (2007) In: Proceedings of the 44th annual convention of chemists by Indian Chemical Society, Kolkata at MGIAS, Jaipur, p. D10

    Google Scholar 

  • El-Hassan SA, Gowen SR (2006) Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. J Phytopathol 154:148–155

    Article  Google Scholar 

  • Fravel DR, Marois JJ, Lumsden RD, Connick WJ Jr (1985) Encapsulation of potential biocontrol agents in an alginate-clay matrix. Phytopathology 75:774–777

    Article  Google Scholar 

  • Fuente AB, De La L, Leticia Q, Natalia B, Elena F, Nora A, Alicia A (2001) Inoculation with Pseudomonas fluorescens biocontrol strains does not affect the symbiosis between rhizobia and forage legumes. Soil Biol Biochem 34:545–548

    Article  Google Scholar 

  • Gomez M, Silva N, Hartmann A, Sagardoy M, Catroux G (1997) Evaluation of commercial soybean inoculants from Argentina. World J Microbiol Biotechnol 13:167–173

    Article  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Bandikinda P, Sathya A, Vijayabharathi R, Rupela O, Kudapa B, Katta K, Varshney RK (2014) Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiol Res 169:40–48

    Article  CAS  PubMed  Google Scholar 

  • Guetsky R, Elad Y, Shtienberg D, Dinoor A (2001) Combining biocontrol agents to reduce variability of biological control. Phytopathology 91:261–267

    Article  Google Scholar 

  • Hassan-El SA, Gowen SR (2006) Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. J Phytopathol 154:148–155

    Article  Google Scholar 

  • Habazar T, Yanti Y, Ritonga C (2014) Formulation of indigenous rhizobacterial isolates from healthy soybean’s root, which ability to promote growth and yield of soybean. Int J Adv Sci Eng Inform Tech 4:5

    Article  Google Scholar 

  • Hughes PR, Wood HA, Breen JP, Simpson SF, Duggan AJ, Dybas JA (1997) Enhanced bioactivity of recombinant baculoviruses expressing insect specific spider toxins in lepidopteran crop pests. J Invertebr Pathol 69:112–118

    Article  PubMed  Google Scholar 

  • Kolet M (2014) Assessment of sawdust as carrier material for fungal inoculum intended for faster composting. Int J Curr Microbiol Appl Sci 3:608–613

    Google Scholar 

  • Kumar V (2014) Characterization, bio-formulation development and shelf-life studies of locally isolated bio-fertilizer strains. Octa J Environ Res 2:32–37

    Google Scholar 

  • Kumar V, Goswami G, Zacharia KA (1999) Issues and concern. In: International conference on fly-ash disposal and utilization. Ind Soc Soil Sc. October, Calcutta, pp 18–21

    Google Scholar 

  • Kumar V, Gupta P (2008) Efficacy of fly-ash based Rhizobium on growth and incidence of powdery mildew in pea. Ann Plant Protect Sci 16:248–249

    Google Scholar 

  • Kumar V, Gupta P, Dwivedi S (2012) Bio-efficacy of fly-ash based Trichoderma formulations against damping-off and root-rot diseases in tomato. Indian Phytopathol 65:404–405

    Google Scholar 

  • Meena B, Radhajeyalakshmi R, Marimuthu T, Vidhyasekaran P, Velazhahan R (2002) Biological control of groundnut late leaf spot and rust by seed and foliar application of a powder formulation of Pseudomonas fluorescens. Biocontrol Sci Technol 12:195–204

    Article  Google Scholar 

  • Melin P, Hakansson S, Eberhard TH, Schnurer J (2006) Survival of the biocontrol yeast Pichia anomala after long-term storage in liquid formulation and different temperature, assessed by flow cytometry. J Appl Microbiol 100:264–271

    Article  CAS  PubMed  Google Scholar 

  • Melin P, Schnurer J, Hakansson S (2011) Formulation and stabilization of the biocontrol yeast Pichia anomala. Antonie Van Leeuwenhoek 99:107–112

    Article  CAS  PubMed  Google Scholar 

  • Montesinos E (2003) Development, registration and commercialization of microbial pesticides for plant protection. Int Microbiol 6:245–252

    Article  CAS  PubMed  Google Scholar 

  • Nakkeeran S, Fernando WGD, Siddiqui ZA (2005) Plant growth-promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: Biocontrol and Biofertilization. Springer, Dordrecht, pp 257–296

    Google Scholar 

  • Namasivayam SKR, Saikia SL, Bharani RSA (2014) Evaluation of persistence and plant growth-promoting effect of bio-encapsulated formulation of suitable bacterial bio-fertilizers. Biosci Biotechnol Res Asia 11:407–415

    Article  Google Scholar 

  • Nandakumar R, Babu S, Viswanathan R, Sheela J, Raguchander T, Samiyappan R (2001) A new bio-formulation containing plant growth-promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in rice. Bio Control 46:493–510

    Google Scholar 

  • Olsen PE, Rice WA, Bordeleau LM, Denudiff AH, Collins MM (1996) Levels and identities of non-rhizobial microorganisms found in commercial legume inoculant made with non-sterile peat carrier. Can J Microbiol 42:72–75

    Article  CAS  PubMed  Google Scholar 

  • Park JK, Chang HN (2000) Microencapsulation of microbial cells. Biotechnol Adv 18:303–319

    Article  CAS  PubMed  Google Scholar 

  • Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267–1271

    Article  CAS  PubMed  Google Scholar 

  • Shapiro M, Argauer R (1997) Components of the stilbene optical brightener Tinopal LPW as enhancers of the gypsy moth (Lepidoptera: Lymatridae) baculovirus. J Eco Entomol 90:899–904

    Article  CAS  Google Scholar 

  • Sivakumar PK, Parthasarthi R, Lakshmipriya VP (2014) Encapsulation of plant growth-promoting inoculant in bacterial alginate beads enriched with humid acid. Int J Curr Microbiol Appl Sci 3:415–422

    Google Scholar 

  • Slininger PJ, Behle RW, Jackson MA, Schisler DA (2003) Discovery and development of biocontrol agents to control crop pests. Neotropical Entomol 32:183–195

    Article  Google Scholar 

  • Smit E, Wolters AC, Lee H, Trevors JT, van Elsas JD (1996) Interaction between a genetically marked Pseudomonas fluorescens strain and bacteriophage ǾR2f in soil: Effects of nutrients, alginate encapsulation and the wheat rhizosphere. Microbiol Ecol 31:125–140

    Article  CAS  Google Scholar 

  • Sundaramoorthy S, Balabaskar P (2012) Consortial effect of endophytic and plant growth-promoting rhizobacteria for the management of early blight of tomato incited by Alternaria solani. J Plant Pathol Microbiol 3:7

    Article  Google Scholar 

  • Taurian T, Anzuay MS, Angelini JG, Tonelli ML, Ludueña L, Pena D, Ibáñez F, Fabra A (2010) Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant Soil 329:421–431

    Article  CAS  Google Scholar 

  • Trevors JT, van Elsas JD, Lee H, Wolters AC (1993) Survival of alginate encapsulated Pseudomonas fluorescens cells in soil. Appl Microbiol Biotechnol 39:637–643

    Article  Google Scholar 

  • Trivedi P, Pandey A, Palni LMS (2005) Carrier-based preparations of PGP bacterial inoculants suitable for use in cooler regions. World J Microbiol Biotehnol 21:941–945

    Article  Google Scholar 

  • Toomsan B, Rupela OP, Mittal S, Dart P, Clark KW (1984) Counting Cicer Rhizobium using a plant infection technique. Soil Biol Biochem 16:503–507

    Google Scholar 

  • Torres R, Usall J, Teixido N, Abadias M, Vinas I (2003) Liquid formulation of the biocontrol agent Candida sake by modifying water activity or adding protectants. J Appl Microbiol 94:330–339

    Article  CAS  PubMed  Google Scholar 

  • Weir SC, Dupuis SP, Providenti MA, Lee H, Trevors JT (1995) Nutrient enhanced survival of and phenanthrene mineralization by alginate encapsulated and free Pseudomonas spp. UG14Lr cells in creosote contaminated soil slurries. Appl Microbiol Biotechnol 43:946–951

    Article  CAS  PubMed  Google Scholar 

  • Young CC, Rekha PD, Lai WA, Arun AB (2006) Encapsulation of plant growth-promoting bacteria in alginate beads enriched with humic acid. Biotechnol Bioeng 95:76–83

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Brown GC (1997) Auto-dissemination of a beet army worm (Leptidoptera: Noctuidae) baculovirus under laboratory conditions. J Econ Entomol 90:1187–1194

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramaniam Gopalakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Srinivas, V. (2016). Formulations of Plant Growth-Promoting Microbes for Field Applications. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2644-4_15

Download citation

Publish with us

Policies and ethics