Skip to main content

Marine Sponge-Derived Antiangiogenic Compounds for Cancer Therapeutics

  • Chapter
  • First Online:
Marine Sponges: Chemicobiological and Biomedical Applications

Abstract

The biological properties of various metabolites from sponges reported recently and marine sponges are considered as a gold mine for past 50 years. Sponge-derived compounds and their metabolites have different types of biological activity such as antimicrobial, antiinflammatory, antimalarial, antioxidant, anti-HIV, and anticancer activity. Angiogenesis is the important process in tumor progression. The term “angiogenic switch” refers to a very important event during the tumor progression between pro- and antiangiogenic factors. Angiogenesis and its mechanistic pathway targeting may be useful for therapeutic approach for cancer. Recent times many compounds from marine sources have proven important role against cancer. These compounds inhibit cell proliferation and angiogenesis of cancer. In this chapter, we discuss the antiangiogenic compounds isolated from marine sponge that work against cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achen MG, Jeltsch M, Kukk E, Mäkinen T, Vitali A, Wilks AF, Alitalo K, Stacker SA (1998) Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci 95(2):548–553

    Article  CAS  Google Scholar 

  • Ando N, Terashima S (2007) Synthesis and matrix metalloproteinase (MMP)-12 inhibitory activity of ageladine A and its analogs. Bioorg Med Chem Lett 17(16):4495–4499

    Article  CAS  Google Scholar 

  • Aoki S, Cho S-h, Ono M, Kuwano T, Nakao S, Kuwano M, Nakagawa S, Gao J-Q, Mayumi T, Shibuya M (2006a) Bastadin 6, a spongean brominated tyrosine derivative, inhibits tumor angiogenesis by inducing selective apoptosis to endothelial cells. Anticancer Drugs 17(3):269–278

    Article  CAS  Google Scholar 

  • Aoki S, Watanabe Y, Sanagawa M, Setiawan A, Kotoku N, Kobayashi M (2006b) Cortistatins A, B, C, and D, anti-angiogenic steroidal alkaloids, from the marine sponge Corticium simplex. J Am Chem Soci 128(10):3148–3149

    Article  CAS  Google Scholar 

  • Aoki S, Watanabe Y, Tanabe D, Arai M, Suna H, Miyamoto K, Tsujibo H, Tsujikawa K, Yamamoto H, Kobayashi M (2007) Structure–activity relationship and biological property of cortistatins, anti-angiogenic spongean steroidal alkaloids. Bioorg Med Chem 15(21):6758–6762

    Article  CAS  Google Scholar 

  • Bai Y-j, Huang L-z, Zhou A-y, Zhao M, W-z Y, Li X-x (2013) Antiangiogenesis effects of endostatin in retinal neovascularization. J Ocul Pharmacol Ther 29(7):619–626

    Article  CAS  Google Scholar 

  • Baldwin ME, Catimel B, Nice EC, Roufail S, Hall NE, Stenvers KL, Karkkainen MJ, Alitalo K, Stacker SA, Achen MG (2001) The specificity of receptor binding by vascular endothelial growth factor-d is different in mouse and man. J Biol Chem 276(22):19166–19171

    Article  CAS  Google Scholar 

  • Bellomo D, Headrick JP, Silins GU, Paterson CA, Thomas PS, Gartside M, Mould A, Cahill MM, Tonks ID, Grimmond SM (2000) Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res 86(2):e29–e35

    Article  CAS  Google Scholar 

  • Bottaro DP, Liotta LA (2003) Cancer: out of air is not out of action. Nature a-z index 423(6940):593–595

    Article  CAS  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660

    Article  CAS  Google Scholar 

  • Cigler T, Vahdat LT (2010) Eribulin mesylate for the treatment of breast cancer. Expert Opin Pharmacother 11(9):1587–1593

    Article  CAS  Google Scholar 

  • Claesson-Welsh L, Welsh M, Ito N, Anand-Apte B, Soker S, Zetter B, O’Reilly M, Folkman J (1998) Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc Natl Acad Sci 95(10):5579–5583

    Article  CAS  Google Scholar 

  • Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and VEGF in vascular development. Nature 438(7070):937–945

    Article  CAS  Google Scholar 

  • Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L (2003) VEGF-receptor signal transduction. Trends Biochem Sci 28(9):488–494

    Article  CAS  Google Scholar 

  • Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18(1):1R–49R

    Article  Google Scholar 

  • Ferrara N (1993) Vascular endothelial growth factor. Trends Cardiovasc Med 3(6):244–250

    Article  CAS  Google Scholar 

  • Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2(10):795–803

    Article  CAS  Google Scholar 

  • Ferrara N (2005) VEGF as a therapeutic target in cancer. Oncology 69(Suppl. 3):11–16

    Google Scholar 

  • Ferrara N, Mass RD, Campa C, Kim R (2007) Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu Rev Med 58:491–504

    Article  CAS  Google Scholar 

  • Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82(1):4–7

    Article  CAS  Google Scholar 

  • Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–30

    Article  CAS  Google Scholar 

  • Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133(2):275–288

    Article  CAS  Google Scholar 

  • Fujita M, Nakao Y, Matsunaga S, Seiki M, Itoh Y, Yamashita J, van Soest RW, Fusetani N (2003) Ageladine A: an antiangiogenic matrix metalloproteinase inhibitor from the marine sponge Agelas nakamurai 1. J Am Chem Soci 125(51):15700–15701

    Article  CAS  Google Scholar 

  • Hu Y, Liu J, Huang H (2013) Recent agents targeting HIF-1α for cancer therapy. J Cell Biochem 114(3):498–509

    Article  CAS  Google Scholar 

  • Joukov V, Kumar V, Sorsa T, Arighi E, Weich H, Saksela O, Alitalo K (1998) A recombinant mutant vascular endothelial growth factor-C that has lost vascular endothelial growth factor receptor-2 binding, activation, and vascular permeability activities. J Biol Chem 273(12):6599–6602

    Article  CAS  Google Scholar 

  • Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129(3):465–472

    Article  CAS  Google Scholar 

  • Kirsch M, Strasser J, Allende R, Bello L, Zhang J, Black PM (1998) Angiostatin suppresses malignant glioma growth in vivo. Cancer Res 58(20):4654–4659

    CAS  Google Scholar 

  • Klagsbrun M, Moses MA (1999) Molecular angiogenesis. Chem Biol 6(8):217–224

    Article  Google Scholar 

  • Kong D, Yamori T, Kobayashi M, Duan H (2011) Antiproliferative and antiangiogenic activities of smenospongine, a marine sponge sesquiterpene aminoquinone. Mar Drugs 9(2):154–161

    Article  CAS  Google Scholar 

  • Kotoku N, Tamada N, Hayashi A, Kobayashi M (2008) Synthesis of BC-ring model of globostellatic acid X methyl ester, an anti-angiogenic substance from marine sponge. Bioorg Med Chem Lett 18(12):3532–3535

    Article  CAS  Google Scholar 

  • Lee SW, Jeong HK, Lee JY, Yang J, Lee EJ, Kim SY, Youn SW, Lee J, Kim WJ, Kim KW (2012) Hypoxic priming of mESCs accelerates vascular lineage differentiation through HIF1-mediated inverse regulation of Oct4 and VEGF. EMBO Mol Med 4(9):924–938

    Article  CAS  Google Scholar 

  • Leung T-W, Xue W-C, Cheung AN, Khoo U-S, Ngan H (2004) Proliferation to apoptosis ratio as a prognostic marker in adenocarcinoma of uterine cervix. Gynecol Oncol 92(3):866–872

    Article  Google Scholar 

  • Lucas R, Holmgren L, Garcia I, Jimenez B, Mandriota SJ, Borlat F, Sim B, Wu Z, Grau G, Shing Y (1998) Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood 92(12):4730–4741

    CAS  Google Scholar 

  • Lyttle DJ, Fraser KM, Fleming SB, Mercer AA, Robinson AJ (1994) Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J Virol 68(1):84–92

    CAS  Google Scholar 

  • Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322):55–60

    Article  CAS  Google Scholar 

  • Martínez-Poveda B, Rodríguez-Nieto S, García-Caballero M, Medina M-Á, Quesada AR (2012) The antiangiogenic compound aeroplysinin-1 induces apoptosis in endothelial cells by activating the mitochondrial pathway. Mar Drugs 10(9):2033–2046

    Article  Google Scholar 

  • Mathieu V, Wauthoz N, Lefranc F, Niemann H, Amighi K, Kiss R, Proksch P (2013) Cyclic versus hemi-bastadins. Pleiotropic anti-cancer effects: from apoptosis to anti-angiogenic and anti-migratory effects. Molecules 18(3):3543–3561

    Article  CAS  Google Scholar 

  • Mizejewski GJ (1999) Role of integrins in cancer: survey of expression patterns. In: Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine, New York. Royal Society of Medicine, pp 124–138

    Google Scholar 

  • Mojzis J, Varinska L, Mojzisova G, Kostova I, Mirossay L (2008) Antiangiogenic effects of flavonoids and chalcones. Pharmacol Res 57(4):259–265

    Article  CAS  Google Scholar 

  • Morgan JB, Mahdi F, Liu Y, Coothankandaswamy V, Jekabsons MB, Johnson TA, Sashidhara KV, Crews P, Nagle DG, Zhou Y-D (2010) The marine sponge metabolite mycothiazole: a novel prototype mitochondrial complex I inhibitor. Bioorg Med Chem 18(16):5988–5994

    Article  CAS  Google Scholar 

  • Mylona E, Alexandrou P, Mpakali A, Giannopoulou I, Liapis G, Markaki S, Keramopoulos A, Nakopoulou L (2007) Clinicopathological and prognostic significance of vascular endothelial growth factors (VEGF)-C and-D and VEGF receptor 3 in invasive breast carcinoma. Eur J Surg Oncol (EJSO) 33(3):294–300

    Article  CAS  Google Scholar 

  • Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18(5):1135–1135

    CAS  Google Scholar 

  • Nishida N, Yano H, Nishida T, Kamura T, Kojiro M (2006) Angiogenesis in cancer. Vasc Health Risk Manag 2(3):213–219

    Article  CAS  Google Scholar 

  • O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285

    Article  Google Scholar 

  • Ogawa S, Oku A, Sawano A, Yamaguchi S, Yazaki Y, Shibuya M (1998) A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J Biol Chem 273(47):31273–31282

    Article  CAS  Google Scholar 

  • Olofsson B, Pajusola K, Kaipainen A, Von Euler G, Joukov V, Saksela O, Orpana A, Pettersson RF, Alitalo K, Eriksson U (1996) Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci 93(6):2576–2581

    Article  CAS  Google Scholar 

  • Olsson A-K, Johansson I, Åkerud H, Einarsson B, Christofferson R, Sasaki T, Timpl R, Claesson-Welsh L (2004) The minimal active domain of endostatin is a heparin-binding motif that mediates inhibition of tumor vascularization. Cancer Res 64(24):9012–9017

    Article  CAS  Google Scholar 

  • Pan L, Baek S, Edmonds PR, Roach M, Wolkov H, Shah S, Pollack A, Hammond ME, Dicker AP (2013) Vascular endothelial growth factor (VEGF) expression in locally advanced prostate cancer: secondary analysis of radiation therapy oncology group (RTOG) 8610. Radiat Oncol 8(1):100

    Article  CAS  Google Scholar 

  • Pawlik JR, McFall G, Zea S (2002) Does the odor from sponges of the genus Ircinia protect them from fish predators? J Chem Ecol 28(6):1103–1115

    Article  CAS  Google Scholar 

  • Qi JH, Claesson-Welsh L (2001) VEGF-induced activation of phosphoinositide 3-kinase is dependent on focal adhesion kinase. Exp Cell Res 263(1):173–182

    Article  CAS  Google Scholar 

  • Rafii S, Skobe M (2003) Splitting vessels: keeping lymph apart from blood. Nature Med 9(2):166–168

    Article  CAS  Google Scholar 

  • Richelle-Maurer E, Gomez R, Braekman J-C, Van de Vyver G, Van Soest RW, Devijver C (2003) Primary cultures from the marine sponge Xestospongia muta (Petrosiidae, Haplosclerida). J Biotechnol 100(2):169–176

    Article  CAS  Google Scholar 

  • Rodríguez-Nieto S, González-Iriarte M, Carmona R, Muñoz-Chápuli R, Medina MA, Quesada AR (2002) Antiangiogenic activity of aeroplysinin-1, a brominated compound isolated from a marine sponge. FASEB J 16(2):261–263

    Google Scholar 

  • Roskelley CD, Williams DE, McHardy LM, Leong KG, Troussard A, Karsan A, Andersen RJ, Dedhar S, Roberge M (2001) Inhibition of tumor cell invasion and angiogenesis by motuporamines. Cancer Res 61(18):6788–6794

    CAS  Google Scholar 

  • Rothmeier AS, Ischenko I, Joore J, Garczarczyk D, Fürst R, Bruns CJ, Vollmar AM, Zahler S (2009) Investigation of the marine compound spongistatin 1 links the inhibition of PKCα translocation to nonmitotic effects of tubulin antagonism in angiogenesis. FASEB J 23(4):1127–1137

    Article  CAS  Google Scholar 

  • Sato Y, Kamiyama H, Usui T, Saito T, Osada H, Kuwahara S, Kiyota H (2008) Synthesis and anti-angiogenic activity of cortistatin analogs. Biosci Biotechnol Biochem 72(11):2992–2997

    Article  CAS  Google Scholar 

  • Schyschka L, Rudy A, Jeremias I, Barth N, Pettit G, Vollmar A (2008) Spongistatin 1: a new chemosensitizing marine compound that degrades XIAP. Leukemia 22(9):1737–1745

    Article  CAS  Google Scholar 

  • Shaala LA, Youssef DT, Sulaiman M, Behery FA, Foudah AI, El Sayed KA (2012) Subereamolline A as a potent breast cancer migration, invasion and proliferation inhibitor and bioactive dibrominated alkaloids from the Red Sea sponge Pseudoceratina arabica. Mar Drugs 10(11):2492

    Article  CAS  Google Scholar 

  • Shengule SR, Loa-Kum-Cheung WL, Parish CR, Blairvacq M, Meijer L, Nakao Y, Karuso P (2011) A one-pot synthesis and biological activity of Ageladine A and analogues. J Med Chem 54(7):2492–2503

    Article  CAS  Google Scholar 

  • Sipkema D, Franssen MC, Osinga R, Tramper J, Wijffels RH (2005) Marine sponges as pharmacy. Marine Biotechnol 7(3):142–162

    Article  CAS  Google Scholar 

  • Sonnenschein RN, Johnson TA, Tenney K, Valeriote FA, Crews P (2006) A reassignment of (-)-mycothiazole and the isolation of a related diol. J Nat Prod 69(1):145–147

    Article  CAS  Google Scholar 

  • Stack MS, Gately S, Bafetti LM, Enghild JJ, Soff GA (1999) Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation. Biochem J 340(Pt 1):77

    Article  CAS  Google Scholar 

  • Stalmans I, Ng Y-S, Rohan R, Fruttiger M, Bouché A, Ÿuce A, Fujisawa H, Hermans B, Shani M, Jansen S (2002) Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 109(3):327–336

    Article  CAS  Google Scholar 

  • Thomas T, Rusch D, DeMaere MZ, Yung PY, Lewis M, Halpern A, Heidelberg KB, Egan S, Steinberg PD, Kjelleberg S (2010) Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J 4(12):1557–1567

    Article  CAS  Google Scholar 

  • Tournaire R, Simon M-P, Le Noble F, Eichmann A, England P, Pouysségur J (2004) A short synthetic peptide inhibits signal transduction, migration and angiogenesis mediated by Tie2 receptor. EMBO Rep 5(3):262–267

    Article  CAS  Google Scholar 

  • Wang TB, Chen ZG, Wei XQ, Wei B, Dong WG (2011) Serum vascular endothelial growth factor C and lymphangiogenesis are associated with the lymph node metastasis and prognosis of patients with colorectal cancer. ANZ J Surg 81(10):694–699

    Article  Google Scholar 

  • Wu H-C, Huang C-T, Chang D-K (2008) Anti-angiogenic therapeutic drugs for treatment of human cancer. J Cancer Mol 4(2):37–45

    CAS  Google Scholar 

  • Xu H, Zhang T, Man GCW, May KE, Becker CM, Davis TN, Kung AL, Birsner AE, D’Amato RJ, Wong AWY (2013) Vascular endothelial growth factor C is increased in endometrium and promotes endothelial functions, vascular permeability and angiogenesis and growth of endometriosis. Angiogenesis 16(3):541–551

    Article  CAS  Google Scholar 

  • Yonekura H, Sakurai S, Liu X, Migita H, Wang H, Yamagishi S-i, Nomura M, Abedin MJ, Unoki H, Yamamoto Y (1999) Placenta growth factor and vascular endothelial growth factor B and C expression in microvascular endothelial cells and pericytes. J Biol Chem 274(49):35172–35178

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalimuthu Senthilkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Senthilkumar, K., Ramajayam, G., Venkatesan, J., Kim, SK., Ahn, BC. (2016). Marine Sponge-Derived Antiangiogenic Compounds for Cancer Therapeutics. In: Pallela, R., Ehrlich, H. (eds) Marine Sponges: Chemicobiological and Biomedical Applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2794-6_14

Download citation

Publish with us

Policies and ethics