Skip to main content

Banding Techniques in Chromosome Analysis

  • Chapter
  • First Online:
Chromosome Structure and Aberrations

Abstract

Chromosome identification has been traditionally based on morphological features of individual chromosomes such as chromosome length, arm ratio and primary and secondary constriction collectively called as karyotype. A number of stains such as acetocarmine, Feulgen and aceto-orcein all of them being whole chromosome stains have been used in these studies. Although classical staining helps in studying chromosome morphology, structural and numerical variations, however, morphologically similar chromosomes cannot be distinguished. The utilization of fluorescent and other dyes together with various modifications in pretreatment of cytological material in the late 1960s led to the discovery of various banding techniques which proved to be additional tool for identification of individual chromosomes. New and reliable staining procedures were introduced; each was capable of revealing a unique banding pattern of the chromosomes of a given species. The advantage with banding techniques is that they can resolve morphologically similar as well as different chromosomes and help in understanding the chromosome organization. Chromosome banding is a lengthwise variation in staining properties along a chromosome based on the GC- or AT-rich regions or constitutive heterochromatin. A single dye or fluorochrome can often be used to produce a banding pattern on a chromosome. A band is a part of chromosome which is clearly distinguishable from its adjacent segment by appearing darker or lighter with various banding methods. The Paris Conference – 1971 – classified banding techniques as Q–banding (fluorescence based), C–banding (constitutive heterochromatin (AT- or GC-rich DNA)), G–banding (whole length banding (Giemsa staining)), R–banding (reverse of G–banding) and Ag-NOR stain (nucleolar organizing regions). All these banding techniques have led to a more precise cytogenetic and phylogenetic analysis of various eukaryotes. The major applications of banding techniques have been the mapping of genes on chromosomes and identification of chromosome alterations such as deletions, duplications, translocations and aneuploidy. They have also played an important role in measuring the amount of heterochromatin among individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson LK, Stack SM, Mitchell JB (1982) An investigation of the basis of current hypothesis for lack of G-banding in plant chromosomes. Exp Celt Res 138:433–436

    Article  CAS  Google Scholar 

  • Arrighi FE, Hsu TC (1971) Location of heterochromatin in human chromosomes. Cytogenetics 10:81–86

    Article  CAS  PubMed  Google Scholar 

  • Barch MJ, Lawce HJ, Arsham MS (1991) Peripheral blood culture. In: Barch MJ (ed) The ACT cytogenetics laboratory manual, 2nd edn. Raven, New York, pp 17–30

    Google Scholar 

  • Barton DW (1950) Pachytene morphology of the tomato chromosome complement. Am J Bot 37:639–643

    Article  Google Scholar 

  • Bobrow M, Madan K, Pearson PL (1972) Staining of some specific regions of human chromosomes, particularly the secondary constriction of no. 9. Nat New Biol 238:122–124

    Article  CAS  PubMed  Google Scholar 

  • Brutlag D, Appels R, Dennis EG (1977) Highly repeated DNA and Drosophila melanogaster. J Mol Biol 112:31–47

    Article  CAS  PubMed  Google Scholar 

  • Burkholder GD, Weaver MG (1977) DNA-protein interactions and chromosome banding. Exp Cell Res 110(2):251–262

    Article  CAS  PubMed  Google Scholar 

  • Caspersson T, Farber S, Foley GE, Kudynowski J, Modest EJ, Simonsson E, Wagh U, Zech L (1968) Chemical differentiation along metaphase chromosomes. Exp Cell Res 49:219–223

    Article  CAS  PubMed  Google Scholar 

  • Caspersson T, Zech L, Modest EJ, Foley GE, Wagh U, Simonsson E (1969) DNA-binding fluorochromes for the study of the organization of the metaphase nucleus. Exp Cell Res 58:141–152

    Article  CAS  PubMed  Google Scholar 

  • Caspersson T, Zech L, Johansson C (1970) Analysis of human metaphase chromosome set by aid of DNA-binding fluorescent agents. Exp Cell Res 62:490–492

    Article  CAS  PubMed  Google Scholar 

  • Comings DE (1975) Mechanisms of chromosome banding. IV. Optical properties of the Giemsa dyes. Chromosoma 50:89–110

    Google Scholar 

  • Comings DE, Kovacs BW, Avelino E, Harris DC (1975) Mechanism of chromosome banding. V. Quinacrine banding. Chromosoma 50:111–145

    Article  CAS  PubMed  Google Scholar 

  • Corneo G, Ginelli E, Polli E (1970) Repeated sequences in human DNA. J Mol Biol 48:319–327

    Article  CAS  PubMed  Google Scholar 

  • Creighton HB, McClintock B (1931) A correlation of cytological and genetical crossing-over in Zea mays. Proc Natl Acad Sci U S A 17:492–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darlington CD, La Cour LF (1940) Nucleic acid starvation of chromosomes in Trillium. J Genet 40:185–213

    Article  Google Scholar 

  • Deumling B, Greilhuber J (1982) Characterization of heterochromatin in different species of the Scilla Siberia group (Liliaceae) by in situ hybridization of satellite DNA and fluorochrome banding. Chromosoma 84:535–555

    Article  CAS  Google Scholar 

  • Drewry A (1982) G-banded chromosomes in Pinus resinosa. J Hered 73:305–306

    Google Scholar 

  • Dutrillaux B, Lejeune J (1971) Sur une nouvelle technique d’analyse du caryotype humain. CR Acad Sci Paris 272:2638–2640

    CAS  Google Scholar 

  • Dutrillaux B, Lejeune J (1975) New techniques in the study of human chromosomes; methods and applications. Adv Hum Genet 5:119–156

    Article  CAS  PubMed  Google Scholar 

  • Endo TR, Gill BS (1984) The heterochromatin distribution and genome evolution in diploid species of Elymus and Agropyron. Can J Genet Cytol 26:669–678

    Article  Google Scholar 

  • Faust J, Vogel W (1974) Are N-bands selective staining of specific heterochromatin? Nature 249:352–353

    Article  CAS  PubMed  Google Scholar 

  • Filion WG, Blakey DH (1979) Differential Giemsa staining in plants VI. Centromeric banding. Can J Genet Cytol 21:373–378

    Article  Google Scholar 

  • Flavell RB, O’Dell M (1976) Ribosomal RNA genes on homoeologous chromosomes of group 5 and 6 in hexaploid wheat. Heredity 37(3):377–385

    Article  Google Scholar 

  • Friebe B, Gill BS (1994) C-band polymorphism and structural rearrangements detected in common wheat (Triticum aestivum). Euphytica 78:1–5

    Google Scholar 

  • Funaki K, Matsui S, Sasaki M (1975) Localization of nucleolar organizers in animal and plant chromosomes by means of an improved N-banding technique. Chromosoma 49:357–370

    Article  CAS  PubMed  Google Scholar 

  • Gerlach WL (1977) N-banded karyotypes of wheat species. Chromosoma 62:49–56

    Article  Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34(5):830–839

    Article  Google Scholar 

  • Greilhuber J (1977) Why plant chromosomes do not show G-bands. Theor Appl Genet 50:121–124

    CAS  PubMed  Google Scholar 

  • Henderson SA, Warburton D, Atwood KC (1974) Localization of rDNA in the chromosome complement of Rhesus (Macaca mulatta). Chromosoma 44:367–370

    Article  CAS  PubMed  Google Scholar 

  • Holmquist G, Gray M, Poster T, Jordan J (1982) Characterization of Giemsa dark and light banded DNA. Cell 31:121–129

    Article  CAS  PubMed  Google Scholar 

  • Horobin RW (2011) How Romanowsky stains work and why they remain valuable – including a proposed universal Romanowsky staining mechanism and a rational troubleshooting scheme. Biotech Histochem 86(1):36–51

    Article  CAS  PubMed  Google Scholar 

  • Howell WM (1985) Selective staining of nucleolus organizer regions (NORs). In: Busch H, Rothblum L (eds) The cell nucleus vol. XI. rDNA part B. Academic Press Inc, New York, pp 89–142

    Google Scholar 

  • Howell WM, Denton TE, Diamond JR (1975) Differential staining of the satellite regions of human acrocentric chromosomes. Experentia 31:260–262

    Article  CAS  Google Scholar 

  • Hutchinson J, Miller TE (1982) The nucleolus organizers of tetraploid and hexaploid wheats revealed by in situ hybridization. Theor Appl Genet 61:285–288

    CAS  PubMed  Google Scholar 

  • Jewell DC (1979) Chromosome banding of Triticum aestivum cv. Chinese spring and aegilops variables. Chromosoma 71:129–134

    Article  Google Scholar 

  • Jones KW (1970) Chromosomal and nuclear location of mouse satellite DNA in individual cells. Nature 225:912–915

    Article  CAS  PubMed  Google Scholar 

  • Kit S (1961) Equilibrium sedimentation in density gradients of DNA preparations from animals tissues. J Mol Biol 3:711–716

    Article  CAS  PubMed  Google Scholar 

  • Kongsuwan K, Smyth DR (1977) Q-band in Lilium and their relationship to C banded heterochromatin. Chromosoma 60:169–178

    Article  Google Scholar 

  • Lin CC, Jorgenson KF, van de Sande JH (1980) Specific fluorescent bands on chromosomes produced by acridine orange after prestaining with base specific non-fluorescent DNA ligands. Chromosoma 79: 271–276

    Google Scholar 

  • Liu JY (2006) Detection of human chromosomal abnormalities using a new technique combining 4',6-diamidino-2-phenyl-indole staining and image analysis. Clin Genet 69(1):65–71

    Article  CAS  PubMed  Google Scholar 

  • Loidl J (1983) Some features of heterochromatin of wild Allium species. Plant Syst Evol 143:117–131

    Article  Google Scholar 

  • Magoon ML, Shambulinguppa KG (1961) Karyomorphology of Sorghum propinquum and its bearing on origin of 40- chromosome sorghum. Chromosoma 12:460–465

    Article  CAS  PubMed  Google Scholar 

  • Matsui S, Sasaki M (1973) Differential staining of nucleolus organizers in mammalian chromosomes. Nature 246:148–150

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1929) Chromosome morphology in Zea mays. Science 69:629

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1932) The stability of broken ends of chromosomes in Zea mays. Genetics 26:234–282

    Google Scholar 

  • McClintock B (1938) The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23:315–376

    CAS  PubMed  PubMed Central  Google Scholar 

  • McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26:234–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  CAS  PubMed  Google Scholar 

  • McKenzie WH, Lubs HA (1973) An analysis of the technical variables in the production of C-bands. Chromosoma 41:175–182

    Article  CAS  PubMed  Google Scholar 

  • Michelson AM, Monny C, Kovoor A (1972) Action of quinacrine mustard on polynucleotide. Biochimie 54:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Miller DA, Dev VG, Tantravahi R, Miller DJ (1976) Suppression of human nucleolus organizer activity in mouse human somatic hybrid cells. Exp Cell Res 101:235–243

    Article  CAS  PubMed  Google Scholar 

  • Misra RN, Shastry SVS (1967) Pachytene analysis in Oryza. VIII. Chromosome morphology and karyotypic variation in O. sativa. Indian J Genet & Plant Breed 27:349–368

    Google Scholar 

  • Pardue ML, Gall JG (1970) Chromosomal localization of mouse satellite DNA. Science 108:1356–1358

    Article  Google Scholar 

  • Phillips RL, Kleese RA, Wang SS (1971) The nucleolus organizer region of maize (Zea mays L.): chromosome site of DNA complementary to ribosomal RNA. Chromosoma 36:79–88

    Article  Google Scholar 

  • Pimpinelli S, Sanuni G, Gatti M (1976) Characterization of Drosophila heterochromatin. II. C-and N-banding. Chromosoma 57:377–386

    Article  CAS  PubMed  Google Scholar 

  • Pinkel D, Straumem T, Gray JW (1986) Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A 83:2934–2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanna MS, Parkken P (1967) Structure of and homology between pachytene and somatic metaphase chromosomes of tomato. Genetica 38:115–133

    Article  Google Scholar 

  • Ritossa FM, Spiegelman S (1965) Localization of DNA complementary to ribosomal RNA in the nucleolus organizer region of Drosophila melanogaster. Proc Natl Acad Sci U S A 53:737–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rooney DE (2001) Human cytogenetics: constitutional analysis. Oxford University Press, New York

    Google Scholar 

  • Rowland RE (1981) Chromosome banding and heterochromatin in Vicia faba. Theor Appl Genet 60:275–280

    Article  CAS  PubMed  Google Scholar 

  • Schlegel R, Gill BS (1984) N-banding analysis of rye chromosomes and the relationship between N-banded and C-banded heterochromatin. Can J Genet Cytol 26:765–769

    Article  Google Scholar 

  • Schmid M, Guttenback M (1988) Evolutionary diversity of reverse (R) fluorescent chromosome bands in vertebrates. Chromosoma 97:101–114

    Google Scholar 

  • Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58:307–324

    Article  CAS  PubMed  Google Scholar 

  • Schweizer D (1979) Fluorescent chromosome banding in plants: applications, mechanisms, and implications for chromosome structure. In: Davies DR, Hopwood DA (eds) Proceedings of the Fourth John Innes Symposium. Norwich, Crowe

    Google Scholar 

  • Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2:971–972

    Article  CAS  PubMed  Google Scholar 

  • Shastry SVS, RangaRao DR, Misra RN (1960) Pachytene analysis in Oryza. I. Chromosome morphology in Oryza sativa. Indian J Genet & Plant Breed 20:15–21

    Google Scholar 

  • Southern EM (1970) Base sequence and evo1ution of guinea a-satellite DNA. Nature 227:794–798

    Article  CAS  PubMed  Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306

    Article  CAS  PubMed  Google Scholar 

  • Sumner AT (1982) The nature and mechanisms of chromosome-banding. Cancer Genet Cytogenet 6(1):59–87

    Article  CAS  PubMed  Google Scholar 

  • Sumner AT, Evans HJ, Buckland RA (1971) New technique for distinguishing between human chromosomes. Nat New Biol 232:31–32

    Article  CAS  PubMed  Google Scholar 

  • Utrillaux B, Lejeune J (1971) Cytogenetique humaine. Sur une nouvelle technique d’ analyse du caryotype humain. C R Acad Sci 272:2638–2640

    Google Scholar 

  • Verma RS, Babu A (1989) Human chromosomes. Manual of basic techniques. Pergamon press, New York, p 240

    Google Scholar 

  • Vosa GG, Marchi P (1972) Quinacrine fluorescence and Giemsa staining in plants. Nat New Biol 237:191–192

    Article  CAS  PubMed  Google Scholar 

  • Wallace H, Bimstie ML (1966) Ribosomal cistrons and the nucleolus organizer. Biochem Biophys Acta 144:295–310

    Google Scholar 

  • Wang HC, Kao KN (1988) G-banding in plant chromosomes. Genome 30:48–51

    Article  Google Scholar 

  • Weisblum B, de Haseth PL (1972) Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylate rich regions in DNA. Proc Natl Acad Sci U S A 63:629–632

    Article  Google Scholar 

  • Weisblum B, Haenssler E (1974) Fluorometric properties of bibenzimidazole derivative hoechst 33258, a fluorescent-probe specific for AT concentration in chromosomal DNA. Chromosoma 3:255–260

    Google Scholar 

  • Wittekind DH, Gehring T (1985) On the nature of Romanowsky-Giemsa staining and the Romanowsky-Giemsa effect. 1. Model experiments on the specificity of azure B-eosin Y stain as compared with other thiazine dye-eosin Y combinations. Histochem J 17(3):263–272

    Article  CAS  PubMed  Google Scholar 

  • Zanker V (1981) Fundamentals of pigment-substrate relationships in histochemistry. Acta Histochem 3:151–168

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peerzada Arshid Shabir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Shabir, P.A., Wani, A.A., Nawchoo, I.A. (2017). Banding Techniques in Chromosome Analysis. In: Bhat, T., Wani, A. (eds) Chromosome Structure and Aberrations. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3673-3_8

Download citation

Publish with us

Policies and ethics