Skip to main content

Free-Space Optical Channel Models

  • Chapter
  • First Online:
Free Space Optical Communication

Part of the book series: Optical Networks ((OPNW))

Abstract

This chapter focuses on statistical description, physical characteristics, and modeling of free-space optical channel. The primary factors characterizing an atmospheric communication channel include atmospheric attenuation (both due to scattering and absorption) and turbulence. This chapter will provide good understanding of various types of atmospheric losses due to absorption, scattering, and turbulence. Section 2.1 presents various types of atmospheric losses due to molecular constituents and particulates present in the atmosphere. Although absorption and scattering significantly decrease the power level of the transmitted beam, the random fluctuations in the intensity of received signal due to turbulence in the atmosphere can severely degrade the wavefront quality of the transmitted beam. Statistical description of atmospheric turbulence and its effect on Gaussian beam will be discussed in this section. Section 2.2 presents various turbulence channel models. Finally, Sect. 2.3 describes various techniques to mitigate the effect of atmospheric turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. R.N. Clark, Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy & in Manual of Remote Sensing (Chapter 1 ), vol. 3. (Wiley, New York, 1999) (Disclaimer: This image is from a book chapter that was produced by personnel of the US Government therefore it cannot be copyrighted and is in the public domain)

    Google Scholar 

  2. R.M. Gagliardi, S. Karp, Optical Communications, 2nd edn. (Wiley, New York, 1995)

    Google Scholar 

  3. R.K. Long, Atmospheric attenuation of ruby lasers. Proc. IEEE 51 (5), 859–860 (1963)

    Article  Google Scholar 

  4. R.M. Langer, Effects of atmospheric water vapour on near infrared transmission at sea level, in Report on Signals Corps Contract DA-36-039-SC-723351 (J.R.M. Bege Co., Arlington, 1957)

    Google Scholar 

  5. A.S. Jursa, Handbook of Geophysics and the Space Environment (Scientific Editor, Air Force Geophysics Laboratory, Washington, DC, 1985)

    Google Scholar 

  6. H. Willebrand, B.S. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today’s Networks (SAMS publishing, Indianapolis, 2002)

    Google Scholar 

  7. M. Rouissat, A.R. Borsali, M.E. Chiak-Bled, Free space optical channel characterization and modeling with focus on algeria weather conditions. Int. J. Comput. Netw. Inf. Secur. 3, 17–23 (2012)

    Google Scholar 

  8. H.C. Van de Hulst, Light Scattering by Small Particles (Dover publications, Inc., New York, 1981)

    Google Scholar 

  9. P. Kruse, L. McGlauchlin, R. McQuistan, Elements of Infrared Technology: Generation, Transmission and Detection (Wiley, New York, 1962)

    Google Scholar 

  10. I.I. Kim, B. McArthur, E. Korevaar, Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. Proc. SPIE 4214, 26–37 (2001)

    Article  Google Scholar 

  11. M.A. Naboulsi, H. Sizun, F. de Fornel, Fog attenuation prediction for optical and infrared waves. J. SPIE Opt. Eng. 43, 319–329 (2004)

    Article  Google Scholar 

  12. I.I. Kim, E. Korevaar, Availability of free space optics (FSO) and hybrid FSO/RF systems. Lightpointe technical report. [Weblink: http://www.opticalaccess.com]

  13. Z. Ghassemlooy, W.O. Popoola, Terrestrial free-space optical communications, in Mobile and Wireless Communications Network Layer and Circuit Level Design, ed. by S.A. Fares, F. Adachi (InTech, 2010), doi:10.5772/7698. [Weblink: http://www.intechopen.com/books/mobile-and-wireless-communications-network-layer-and-circuit-level-design/terrestrial-free-space-optical-communications]

  14. W.K. Hocking, Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: a review. Radio Sci. 20 (6), 1403–1422 (1985)

    Article  Google Scholar 

  15. R. Latteck, W. Singer, W.K. Hocking, Measurement of turbulent kinetic energy dissipation rates in the mesosphere by a 3 MHz Doppler radar. Adv. Space Res. 35 (11), 1905–1910 (2005)

    Article  Google Scholar 

  16. L.C. Andrews, R.L. Phillips, Laser Beam Propagation Through Random Medium, 2nd edn. (SPIE Optical Engineering Press, Bellinghan, 1988)

    Google Scholar 

  17. H.E. Nistazakis, T.A. Tsiftsis, G.S. Tombras, Performance analysis of free-space optical communication systems over atmospheric turbulence channels. IET Commun. 3 (8), 1402–1409 (2009)

    Article  Google Scholar 

  18. P.J. Titterton, Power reduction and fluctuations caused by narrow laser beam motion in the far field. Appl. Opt. 12 (2), 423–425 (1973)

    Article  Google Scholar 

  19. J.H. Churnside, R.J. Lataitis, Wander of an optical beam in the turbulent atmosphere. Appl. Opt. 29 (7), 926–930 (1990)

    Article  Google Scholar 

  20. R.R. Beland, Propagation through atmospheric optical turbulence, in The Infrared and Electro-Optical Systems Handbook, vol. 2 (SPIE Optical Engineering Press, Bellinghan, 1993)

    Google Scholar 

  21. H. Hemmati, Near-Earth Laser Communications (CRC Press/Taylor & Francis Group, Boca Raton, 2009)

    Book  Google Scholar 

  22. L.C. Andrews, R.L. Phillips, R.J. Sasiela, R.R. Parenti, Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects. Opt. Eng. 45 (7), 076001-1–076001-12 (2006)

    Google Scholar 

  23. H.T. Yura, W.G. McKinley, Optical scintillation statistics for IR ground-to-space laser communication systems. Appl. Opt. 22 (21), 3353–3358 (1983)

    Article  Google Scholar 

  24. J. Parikh, V.K. Jain, Study on statistical models of atmospheric channel for FSO communication link, in Nirma University International Conference on Engineering-(NUiCONE), Ahmedabad (2011), pp. 1–7

    Google Scholar 

  25. H.G. Sandalidis, Performance analysis of a laser ground-station-to-satellite link with modulated gamma-distributed irradiance fluctuations. J. Opt. Commun. Netw. 2 (11), 938–943 (2010)

    Article  Google Scholar 

  26. J. Park, E. Lee, G. Yoon, Average bit-error rate of the Alamouti scheme in gamma-gamma fading channels. IEEE Photonics Technol. Lett. 23 (4), 269–271 (2011)

    Article  Google Scholar 

  27. M.A. Kashani, M. Uysal, M. Kavehrad, A Novel Statistical Channel Model for Turbulence-Induced Fading in Free-Space Optical Systems. PhD thesis, Cornell University, 2015

    Google Scholar 

  28. A.K. Ghatak, K. Thyagarajan, Optical Electronics (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  29. L.C. Andrews, W.B. Miller, Single-pass and double-pass propagation through complex paraxial optical systems. J. Opt. Soc. Am. 12 (1), 137–150 (1995)

    Article  Google Scholar 

  30. L.C. Andrews, R.L. Phillips, P.T. Yu, Optical scintillation and fade statistics for a satellite-communication system. Appl. Opt. 34 (33), 7742–7751 (1995)

    Article  Google Scholar 

  31. H. Guo, B. Luo, Y. Ren, S. Zhao, A. Dang, Influence of beam wander on uplink of ground-to-satellite laser communication and optimization for transmitter beam radius. Opt. Lett. 35 (12), 1977–1979 (2010)

    Article  Google Scholar 

  32. N.G. Van Kampen, Stochastic differential equations. Phys. Rep. (Sect. C Phys. Lett.) 24 (3), 171–228 (1976)

    Google Scholar 

  33. B.J. Uscinski, The Elements of Wave Propagation in Random Media (McGraw-Hill, New York, 1977)

    Google Scholar 

  34. H.T. Yura, S.G. Hanson, Second-order statistics for wave propagation through complex optical systems. J. Opt. Soc. Am. A 6 (4), 564–575 (1989)

    Article  Google Scholar 

  35. S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Wave Propagation Through Random Media, vol. 4 (Springer, Berlin, 1989)

    MATH  Google Scholar 

  36. N.S. Kopeika, A. Zilberman, Y. Sorani, Measured profiles of aerosols and turbulence for elevations of 2–20 km and consequences on widening of laser beams. Proc. SPIE Opt. Pulse Beam Propag. III 4271 (43), 43–51 (2001)

    Google Scholar 

  37. A. Zilberman, N.S. Kopeika, Y. Sorani, Laser beam widening as a function of elevation in the atmosphere for horizontal propagation. Proc. SPIE Laser Weapons Tech. II 4376 (177), 177–188 (2001)

    Article  Google Scholar 

  38. G.C. Valley, Isoplanatic degradation of tilt correction and short-term imaging systems. Appl. Opt. 19 (4), 574–577 (1980)

    Article  Google Scholar 

  39. D.H. Tofsted, S.G. O’Brien, G.T. Vaucher, An atmospheric turbulence profile model for use in army wargaming applications I. Technical report ARL-TR-3748, US Army Research Laboratory (2006)

    Google Scholar 

  40. E. Oh, J. Ricklin, F. Eaton, C. Gilbreath, S. Doss-Hammel, C. Moore, J. Murphy, Y. Han Oh, M. Stell, Estimating atmospheric turbulene using the PAMELA model. Proc. SPIE Free Space Laser Commun. IV 5550, 256–266 (2004)

    Article  Google Scholar 

  41. S. Doss-Hammel, E. Oh, J. Ricklinc, F. Eatond, C. Gilbreath, D. Tsintikidis, A comparison of optical turbulence models. Proc. SPIE Free Space Laser Commun. IV 5550, 236–246 (2004)

    Article  Google Scholar 

  42. S. Karp, R.M. Gagliardi, S.E. Moran, L.B. Stotts, Optical Channels: Fibers, Clouds, Water, and the Atmosphere. (Plenum Press, New York/London, 1988)

    Google Scholar 

  43. R.E. Hufnagel, N.R. Stanley, Modulation transfer function associated with image transmission through turbulence media. J. Opt. Soc. Am. 54 (52), 52–62 (1964)

    Article  Google Scholar 

  44. R.K. Tyson, Adaptive optics and ground to space laser communication. Appl. Opt. 35 (19), 3640–3646 (1996)

    Article  Google Scholar 

  45. R.E. Hugnagel, Variation of atmospheric turbulence, in Digest of Topical Meeting on Optical Propagation Through Turbulence (Optical Society of America, Washington, DC, 1974), p. WA1

    Google Scholar 

  46. A.S. Gurvich, A.I. Kon, V.L. Mironov, S.S. Khmelevtsov, Laser Radiation in Turbulent Atmosphere (Nauka Press, Moscow, 1976)

    Google Scholar 

  47. M.R. Chatterjee, F.H.A. Mohamed, Modeling of power spectral density of modified von Karman atmospheric phase turbulence and acousto-optic chaos using scattered intensity profiles over discrete time intervals. Proc. SPIE Laser Commun. Prop. Atmosp. Oce. III 9224, 922404-1–922404-16 (2014)

    Google Scholar 

  48. V.I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Israel Program for Scientific Translations, Jerusalem, 1971)

    Google Scholar 

  49. M.C. Roggermann, B.M. Welsh, Imaging Through Turbulence (CRC Press, Boca Raton, 1996)

    Google Scholar 

  50. H. Hemmati (ed.), Near-Earth Laser Communications (CRC Press, Boca Raton, 2009)

    Google Scholar 

  51. T.E. Van Zandt, K.S. Gage, J.M. Warnock, An improve model for the calculation of profiles of wind, temperature and humidity, in Twentieth Conference on Radar Meteorology (American Meteorological Society, Boston, 1981), pp. 129–135

    Google Scholar 

  52. E.M. Dewan, R.E. Good, R. Beland, J. Brown, A model for C n 2 (optical turbulence) profiles using radiosonde data. Environmental Research Paper-PL-TR-93-2043 1121, Phillips Laboratory, Hanscom, Airforce base (1993)

    Google Scholar 

  53. E.J. Lee, V.W.S. Chan, Optical communications over the clear turbulent atmospheric channel using diversity: part 1. IEEE J. Sel. Areas Commun. 22 (9), 1896–1906 (2004)

    Article  Google Scholar 

  54. A.L. Buck, Effects of the atmosphere on laser beam propagation. Appl. Opt. 6 (4), 703–708 (1967)

    Article  Google Scholar 

  55. H. Weichel, Laser Beam Propagation in the Atmosphere (SPIE Press, Washington, DC, 1990)

    Google Scholar 

  56. S. Bloom, The physics of free space optics. Technical report, AirFiber, Inc. (2002)

    Google Scholar 

  57. D.L. Fried, Aperture averaging of scintillation. J. Opt. Soc. Am. 57 (2), 169–172 (1967)

    Article  Google Scholar 

  58. T.A. Tsiftsis, H.G. Sandalidis, G.K. Karagiannidis, M. Uysal, Optical wireless links with spatial diversity over strong atmospheric turbulence channels. IEEE Trans. Wirel. Commun. 8 (2), 951–957 (2009)

    Article  Google Scholar 

  59. S.M. Navidpour, M. Uysal, M. Kavehrad, BER performance of free-space optical transmission with spatial diversity. IEEE Trans. Wirel. Commun. 6 (8), 2813–2819 (2007)

    Article  Google Scholar 

  60. A.D. Wyner, Capacity and error exponent for the direct detection photon channel – part 1. IEEE Trans. Inf. Theory 34 (6), 1449–1461 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  61. W. Haiping, M. Kavehrad, Availability evaluation of ground-to-air hybrid FSO/RF links. J. Wirel. Inf. Netw. (Springer) 14 (1), 33–45 (2007)

    Google Scholar 

  62. H. Moradi, M. Falahpour, H.H. Refai, P.G. LoPresti, M. Atiquzzaman, On the capacity of hybrid FSO/RF links, in Proceedings of IEEE, Globecom (2010)

    Google Scholar 

  63. Y. Tang, M. Brandt-Pearce, S. Wilson, Adaptive coding and modulation for hybrid FSO/RF systems, in Proceeding of IEEE, 43rd Asilomar Conference on Signal, System and Computers, Pacific Grove (2009)

    Google Scholar 

  64. E. Ali, V. Sharma, P. Hossein, Hybrid channel codes for efficient FSO/RF communication systems. IEEE. Trans. Commun. 58 (10), 2926–2938 (2010)

    Article  Google Scholar 

  65. D.K. Kumar, Y.S.S.R. Murthy, G.V. Rao, Hybrid cluster based routing protocol for free-space optical mobile ad hoc networks (FSO/RF MANET), in Proceedings of the International Conference on Frontiers of Intelligent Computing, vol. 199 (Springer, Berlin/Heidelberg, 2013), pp. 613–620

    Google Scholar 

  66. J. Derenick, C. Thorne, J. Spletzer, Hybrid Free-space Optics/Radio Frequency (FSO/RF) networks for mobile robot teams, in Multi-Robot Systems: From Swarms to Intelligent Automata, ed. by A.C. Schultz, L.E. Parke (Springer, 2005)

    Google Scholar 

  67. S. Chia, M. Gasparroni, P. Brick, The next challenge for cellular networks: backhaul. Proc. IEEE Microw. Mag. 10 (5), 54–66 (2009)

    Article  Google Scholar 

  68. C. Milner, S.D. Davis, Hybrid free space optical/RF networks for tactical operations, in Military Communications Conference (MILCOM), Monterey (2004)

    Google Scholar 

  69. A. Kashyap, M. Shayman, Routing and traffic engineering in hybrid RF/FSO networks, in IEEE International Conference on Communications (2005)

    Google Scholar 

  70. B. Liu, Z. Liu, D. Towsley, On the capacity of hybrid wireless network, in IEEE INFOCOM’03 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Kaushal, H., Jain, V.K., Kar, S. (2017). Free-Space Optical Channel Models. In: Free Space Optical Communication. Optical Networks. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3691-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-3691-7_2

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-3689-4

  • Online ISBN: 978-81-322-3691-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics