Skip to main content

Exploiting Variability in Resistive Memory Devices for Cognitive Systems

  • Chapter
  • First Online:
Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 31))

Abstract

In literature, different approaches point to the use of different resistive memory (RRAM) device families such as PCM [1], OxRAM, CBRAM [2], and STT-MRAM [3] for synaptic emulation in dedicated neuromorphic hardware. Most of these works justify the use of RRAM devices in hybrid learning hardware on grounds of their inherent advantages, such as ultra-high density, high endurance, high retention, CMOS compatibility, possibility of 3D integration, and low power consumption [4]. However, with the advent of more complex learning and weight update algorithms (beyond-STDP kinds), for example the ones inspired from Machine Learning, the peripheral synaptic circuit overhead considerably increases. Thus, use of RRAM cannot be justified on the merits of device properties alone. A more application-oriented approach is needed to further strengthen the case of RRAM devices in such systems that exploit the device properties also for peripheral nonsynaptic and learning circuitry, beyond the usual synaptic application alone.In this chapter, we discuss two novel designs utilizing the inherent variability in resistive memory devices to successfully implement modified versions of Extreme Learning Machines and Restricted Boltzmann Machines in hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suri, M., Bichler, O., Querlioz, D., Cueto, O., Perniola, L., Sousa, V., Vuillaume, D., Gamrat, C., DeSalvo, B.: Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction. 2011 IEEE International Electron Devices Meeting (IEDM), vol. 4, no. 4, pp. 5–7, Dec 2011

    Google Scholar 

  2. Suri, M., Querlioz, D., Bichler, O., Palma, G., Vianello, E., Vuillaume, D., Gamrat, C., DeSalvo, B.: Bio-inspired stochastic computing using binary cbram synapses. IEEE Trans. Electron Devices 60(7), 2402–2409 (2013)

    Article  Google Scholar 

  3. Vincent, A.F., Larroque, J., Zhao, W.S., Romdhane, N.B. Bichler, O., Gamrat, C., Klein, J.O., Galdin-Retailleau, S., Querlioz, D.: Spin-transfer torque magnetic memory as a stochastic memristive synapse. In: Circuits and Systems (ISCAS), vol. 2014, pp. 1074–1077 (2014)

    Google Scholar 

  4. DeSalvo, B., Sousa, V., Perniola, L., Jahan, C., Maitrejean, S., Nodin, J., Cagli, C., Jousseaume, V., Molas, G., Vianello, E. et al.: Emerging memory technologies: Challenges and opportunities

    Google Scholar 

  5. Wong, H.-S.P., Lee, H.-Y., Yu, S., Chen, Y.-S., Wu, Y., Chen, P.S. Lee, B., Chen, F.T., Tsai, M.-J.: Metal–Oxide RRAM, vol. 100, no. 6. IEEE, pp. 1951–1970 (2012)

    Google Scholar 

  6. Gopalan, C., Ma, Y., Gallo, T., Wang, J., Runnion, E., Saenz, J., Koushan, F., Blanchard, P., Hollmer, S.: Demonstration of conductive bridging random access memory (cbram) in logic cmos process. Solid-State Electron. 58, 1 (2011)

    Article  Google Scholar 

  7. Su, Y.-T., Chang, K.-C., Chang, T.-C., Tsai, T.-M., Zhang, R., Lou, J., Chen, J.-H., Young, T.-F., Chen, K.-H., Tseng, B.-H., et al.: Characteristics of hafnium oxide resistance random access memory with different setting compliance current. Appl. Phys. Lett. 103(16), 163502 (2013)

    Article  Google Scholar 

  8. Yu, S., Guan, X., Wong, H.-S.P.: On the switching parameter variation of metal oxide rrampart ii: model corroboration and device design strategy. IEEE Trans. Electron Devices 59(4), 1183–1188 (2012)

    Article  Google Scholar 

  9. Suri, M., Parmar, V., Sassine, G., Alibart, F.: Oxram based elm architecture for multi-class classification applications. Neural Netw. (IJCNN) 2015, 1–8 (2015)

    Google Scholar 

  10. Suri, M., Parmar, V.: Exploiting intrinsic variability of filamentary resistive memory for extreme learning machine architectures. IEEE Trans. Nanotechnol. 14(6), 963–968 (2015)

    Article  Google Scholar 

  11. Raghavan, N.: Performance and Reliability Trade-offs for High-\(\kappa \) RRAM. Elsevier, vol. 54, no. 9 (2014)

    Google Scholar 

  12. Fantini, A., Goux, L., Degraeve, R., Wouters, D., Raghavan, N., Kar, G., Belmonte, A., Chen, Y.-Y., Govoreanu, B., Jurczak, M.: Intrinsic Switching Variability in Hfo 2 RRam, pp. 30–33 (2013)

    Google Scholar 

  13. Chen, A., Lin, M.-R.: Variability of resistive switching memories and its impact on crossbar array performance. Reliab. Phys. Symp. (IRPS) 2011 (2011)

    Google Scholar 

  14. Suri, M., Parmar, V., Kumar, A., Querlioz, D., Alibart, F.: Neuromorphic hybrid rram-cmos rbm architecture. In: 2015 15th Non-Volatile Memory Technology Symposium (NVMTS), pp. 1–6, Oct 2015

    Google Scholar 

  15. Huang, G.-B.: An insight into extreme learning machines: random neurons, random features and kernels. Cogn. Comput. 1–15 (2014)

    Google Scholar 

  16. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)

    Article  Google Scholar 

  17. Yang, A.Y., Sastry, S.S., Ganesh, A., Ma, Y.: Fast l 1-minimization algorithms and an application in robust face recognition: A review, pp. 1849–1852 (2010)

    Google Scholar 

  18. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning scheme of feedforward neural networks. Neural Netw. 2004, 985–990 (2004)

    Google Scholar 

  19. Merkel, C., Kudithipudi, D.: A current-mode cmos/memristor hybrid implementation of an extreme learning machine. In: Proceedings of the 24th edition of the Great Lakes Symposium on VLSI, pp. 241–242. ACM (2014)

    Google Scholar 

  20. Decherchi, S., Gastaldo, P., Leoncini, A., Zunino, R.: Efficient digital implementation of extreme learning machines for classification. IEEE Trans. Circuits Syst. II: Express Briefs 59(8), 496–500 (2012)

    Article  Google Scholar 

  21. Lee, H.Y., Chen, P.S., Wu, T.Y., et al.: Low power and speed bipolar switching with a thin reactive buffer layer in robust HfO2 based RRAM. Int. Electron Devices Meet. (2008)

    Google Scholar 

  22. Su, Y.-T., et al.: Characteristics of hafnium oxide resistance random access memory with different setting compliance current. Appl. Phys. Lett. 103, 16 (2013)

    Google Scholar 

  23. Yu, S., Guan, X., Wong, H.-S.P.: On the stochastic nature of resistive switching in metal oxide rram: physical modeling, monte carlo simulation, and experimental characterization. Int. Electron Device Meet. (2011)

    Google Scholar 

  24. Shi, B., Chen, L., Lu, C.: Current controlled sigmoid neural circuit. U.S. Patent, vol. 6, Dec 2003

    Google Scholar 

  25. Irturk, A., Benson, B., Mirzaei, S., Kastner, R.: An fpga design space exploration tool for matrix inversion architectures. Appl. Specif. Processors 2008, 42–47 (2008)

    Google Scholar 

  26. Zhang, W., Betz, V., Rose, J.: Portable and scalable fpga-based acceleration of a direct linear system solver. In: ACM Transactions on Reconfigurable Technology and Systems (TRETS), vol. 5, p. 1 (2012)

    Google Scholar 

  27. Bache, K., Lichman, M.: UCI Machine Learning Repository [Irvine. CA: University of California, School of Information and Computer Science (2013). http://archive.ics.uci.edu/ml

  28. Hinton, G.: A practical guide to training restricted boltzmann machines. Momentum 9(1), 926 (2010)

    Google Scholar 

  29. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pan, D., Wilamowski, B.M.: A vlsi implementation of mixed-signal mode bipolar neuron circuitry. In: Proceedings of the International Joint Conference on Neural Networks, 2003, vol. 2, pp. 971–976, July 2003

    Google Scholar 

  31. Li, H., Jiang, Z., Huang, P., Wu, Y., Chen, H.Y., Gao, B., Liu, X.Y., Kang, J.F., Wong, H.S.P.: Variation-aware, reliability-emphasized design and optimization of rram using spice model. In: 2015 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1425–1430, Mar 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manan Suri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Parmar, V., Suri, M. (2017). Exploiting Variability in Resistive Memory Devices for Cognitive Systems. In: Suri, M. (eds) Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices. Cognitive Systems Monographs, vol 31. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3703-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-3703-7_9

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-3701-3

  • Online ISBN: 978-81-322-3703-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics