Skip to main content

Le fratture da fragilità ossea: I’incompetenza meccanica del tessuto scheletrico

  • Chapter
Osteoporosi: le nuove prospettive in ortopedia e traumatologia

Part of the book series: Corsi di perfezionamento in ortopedia e traumatologia ((CORSI))

  • 382 Accesses

Estratto

L’incidenza dell’osteoporosi associata alle fratture di colonna vertebrale, di femore e di radio è in continuo aumento [1]. Le fratture da compressione vertebrale sono le più precoci e comuni fratture causate dall’osteoporosi; la loro prevalenza aumenta costantemente con l’età passando dal 20% nelle donne cinquantenni in menopausa al 64,5% nelle donne più anziane e in America si stima che la loro incidenza sia di circa 700.000/anno, un terzo delle quali provoca dolore cronico [2]. Negli ultimi anni uno studio sulla popolazione svedese ha evidenziato un incremento dell’incidenza delle fratture di femore, dal 4,5 al 6,5 per 1000 cittadini e un’età media al momento dell’evento fratturativo aumentata rispetto agli ultimi 30–40 anni: più della metà dei pazienti ha un’età media superiore a 80 anni [3]. Si tratta quindi di un problema che grava sulla spesa sanitaria mondiale tanto che si ipotizza che nel 2050 il costo globale del trattamento delle sole fratture di femore raggiungerà 131 miliardi di dollari [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Melton LJ, Thamer NF, Ray JK et al (1997) Fractures attributable to osteoporosis: report from tha national osteoporosis foundation. J Bone Miner Res 12:16–23

    Article  PubMed  Google Scholar 

  2. Haczynski J, Jakimiuk A (2001) Vertebral fractures: a hidden problem of osteoporosis. Med Sci Monit 7:1108–1117

    PubMed  CAS  Google Scholar 

  3. Jensen JS (1980) Incidence of hip fractures. Acta Orthop Scand 51:511–513

    Article  PubMed  CAS  Google Scholar 

  4. Chrischilles E, Shireman T, Fallace R (1994) Costs and health effects of osteoporotic fractures. Bone 15:377–386

    Article  PubMed  CAS  Google Scholar 

  5. Muller R, Van Lenthe GH (2004) Microarchitectural aspects of quality and competence of bone. Adv Osteoporotic Fract Manag 3:2–12

    Google Scholar 

  6. Wehrli FW, Saha PK, Gomberg BR et al (2002) Role of magnetic resonance for assessing structure and function of trabecular bone. Top Magn Reson Imaging 13:335–355

    Article  PubMed  Google Scholar 

  7. Odgaard A, Linde F (1991) The understimation of Young’s modulus in compressive testing of cancellous bone speciments. J Biomech 24:691–698

    Article  PubMed  CAS  Google Scholar 

  8. Hansson T, Roos B, Nachemson A (1980) The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine 5:46–54

    Article  PubMed  CAS  Google Scholar 

  9. CH Turner and DB Burr (1993) Basic biomechanical measurement of bone: a tutorial. Bone 14:595–608

    Article  PubMed  CAS  Google Scholar 

  10. Ashman RB, Cowin SC, Van Buskirk WC et al (1984) A continuous wave technique for the measurements of the elastic properties of cortical bone. J Biomech 17:349–361

    Article  PubMed  CAS  Google Scholar 

  11. Burstein AH, Reilly DT, Martens M (1976) Aging of bone tissue: Mechanical properties. J Bone Joint Surg Am 58:82–86

    PubMed  CAS  Google Scholar 

  12. Carter DR and Hayers WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Sur Am 59:954–962

    CAS  Google Scholar 

  13. Mosekilde L, Mosekilde L, Danielsen CC (1987) Biomechanical competance of vertebral trabecular bone in relation of ash density and age in normal individuals. Bone 8:79–85

    Article  PubMed  CAS  Google Scholar 

  14. Currey JD (1988) The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech 21:131–139

    Article  PubMed  CAS  Google Scholar 

  15. Ciarelli TE, Fyhrie DP, Schaffler MB, Goldstein SA (2000) Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J Bone Miner Res 15:32–40

    Article  PubMed  CAS  Google Scholar 

  16. Silva M, Gibson L (1997) Modelling the mechanical behavior of vertebral bone: effects of age-related changes in micro-structure. Bone 21:191–199

    Article  PubMed  CAS  Google Scholar 

  17. Mori S, Harruff R, Ambrosius W, Burr DB (1997) Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. Bone 21:521–526

    Article  PubMed  CAS  Google Scholar 

  18. Martin R (1993) Aging and strength of bone as a structural material. Calcif Tissue Int 53[Suppl 1]:34–40

    Article  Google Scholar 

  19. Ericksen MF (1976) Some aspects of aging in the lumbar spine. Am J Phys Anthrop. 45:575–580

    Article  PubMed  CAS  Google Scholar 

  20. Beck TJ, Ruff CB, Scott WW Jr (1992) Sex differences in geometry of the femoral neck with aging: A structural analysis of bone mineral data. Calcif Tissue Int 50:24–29

    Article  PubMed  CAS  Google Scholar 

  21. McCalden RW, McGeough JA, Barker MB (1993) Age-related changes in the tensile properties of cortical bone. J Bone and Joint Surg Am 75:1193–1205

    CAS  Google Scholar 

  22. Currey JD (1979) Changes in the impact energy absorption of bone with age J Biomech 12:459–469

    Article  PubMed  CAS  Google Scholar 

  23. Evans FG (1976) Mechanical properties and histology of cortical bone from younger and older men. Anat Rec 185:1–11

    Article  PubMed  CAS  Google Scholar 

  24. Hansson T, Roos B, Nachemson A (1980) The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine 5:46–54

    Article  PubMed  CAS  Google Scholar 

  25. Lill Ca, Goldhahn J, Albrecht A et al (2003) Impact of bone density on distal radius fracture patterns and comparison between five different fracture classifications. J Orthop Trauma 17:271–277

    Article  PubMed  CAS  Google Scholar 

  26. Melone CP (1984) Articular fractures of the distal radius. Orthop Clin North Am 15:217–236

    PubMed  Google Scholar 

  27. Zain Elabdien BS, Olerud S, Kalstroin G (1984) The influence of age on the morphology of trochanteric fracture. Arch Orthop Trauma Surg 103:156–161

    Article  PubMed  CAS  Google Scholar 

  28. Kristiansen B, Christensen SW (1986) Plate fixation of proximal humeral fractures. Acta Orthop Scand 57:320–323

    Article  PubMed  CAS  Google Scholar 

  29. Baumgaertner MR, Curtin SL, Lindskog DM et al (1995) The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am 77:1058–1064

    PubMed  CAS  Google Scholar 

  30. Blatter G, Konig A, Janssen M et al (1994) Primary femoral shortening osteosynthesis in the management of comminuted supracondylar femoral fractures. Acta Orthop trauma Surg 113:134–137

    Article  CAS  Google Scholar 

  31. Brown JT, Abrami G (1964) Transcervical femoral fracture. J Bone JT Surg 46-B:648

    Google Scholar 

  32. Spangler L, Cummings P, Tencer AF et al (2001) Biomechanical factors and failure of transcervical hip fracture repair. Int J Care Injured 32:223–228

    CAS  Google Scholar 

  33. Chapman MW, Bowman WE, Csongradi JJ et al (1981) The use of Ender’s pins in extracapsular fractures of the hip. J Bone Joint Surg Am 63:14

    PubMed  CAS  Google Scholar 

  34. Barrios C, Brostrom LA, Stark A et al (1993) Healing complications after internal fixation of trochanteric hip fractures: the prognostic value of osteoporosis. J Orthop Trauma 5:438–442

    Article  Google Scholar 

  35. Plashman RS, Hu SS, Schendel MU et al (1993) Sacral screw loads in lumbosacral fixation for spinal deformity. Spine 18:2465–2470

    Article  Google Scholar 

  36. Breeze SW, Doherty BJ, Noble PS et al (1998) A biomechanical study of anterior thoracolumbar screw fixation. Spine 23:1829–1831

    Article  PubMed  CAS  Google Scholar 

  37. Lim TH, An HS, Hasegawa T et al (1995) Prediction of fatigue screw loosening in anterior spinal fixation using dual energy x-ray absorptiometry. Spine 20:2565–256

    Article  PubMed  CAS  Google Scholar 

  38. Namkung-Matthai H, Appleyard R et al (2001) Osteoporosis influences in early period of fracture healing in a rat osteoporotic model. Bone 28:80–86

    Article  PubMed  CAS  Google Scholar 

  39. Maric PJ, Sabbagh A, De Vernejoul MC et al (1989) Osteocalcin and deoxyribonucleic acid synthesis in vitro and histomorphometric indices of bone formation in post-menopausal osteoporosis. J Clin Endocrinol Metab 69:272–279

    Article  Google Scholar 

  40. Hollevoet N, Verdonk R (2003) Outcome of distal radius fracture in relation to bone mineral density. Acta Orthop Belgica 69:510

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Italia

About this chapter

Cite this chapter

Garcia Parra, C., Boselli, P.M., Trevisan, C., Marinoni, E.G. (2006). Le fratture da fragilità ossea: I’incompetenza meccanica del tessuto scheletrico. In: Osteoporosi: le nuove prospettive in ortopedia e traumatologia. Corsi di perfezionamento in ortopedia e traumatologia. Springer, Milano. https://doi.org/10.1007/978-88-470-0546-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0546-4_4

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0545-7

  • Online ISBN: 978-88-470-0546-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics