Skip to main content

Hemodynamics in Standard Cardiac Pacing

  • Conference paper
Current News in Cardiology
  • 395 Accesses

Abstract

The first rate-responsive pacing systems were introduced by Center [1] and Lagergren [2] in 1964–1966. Both systems used P waves, which were detected with an atrial electrode positioned by thoracotomy or mediastinoscopy to trigger the ventricular pacing after a short delay. A comparison of the acute data with VVI pacing showed that the cardiac index increased by 10–30%. Despite these promising data, atrioventricular (AV) synchronous pacemakers were not widely used until the late 1970s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Center S, Nathan D, Wu CY et al (1964) Two years of clinical experience with the synchronous pacemaker. J Thorac Cardiovasc Surg 48:513–526

    PubMed  CAS  Google Scholar 

  2. Lagergren H, Johansson L, Karlof J et al (1966) Atrial-triggered pacemaking without thoracotomy. Acta Chir Scand 132: 678–695

    Google Scholar 

  3. Karlöf I (1975) Hemodynamics effect of atrial triggered versus fixed rate pacing at rest and during exrecise in complete heart block. Acta Med Scand 197:195–210

    PubMed  Google Scholar 

  4. Kruse I, Bevegård S, Ovenfors CO et al (1982) A comparison of acute and long-term hemodynamics effects of ventricular inhibited and atrial synchronous pacing. Circulation 65:846–855

    PubMed  CAS  Google Scholar 

  5. Kristensson B, Arnman K, Ryden L et al (1985) The hemodynamic importance of atrioventricular synchrony and rate increase at rest and during exercise. Eur Heart J 6:773–778

    PubMed  CAS  Google Scholar 

  6. Perhsson SK (1983) Influence of heart rate and atrioventricular synchrony on maximal work tolerance in patients treated with artificial pacemakers. Acta Med Scand 214:311–315

    Article  Google Scholar 

  7. Benchimol A, Li YB, Simone EG (1964) Cardiovascular dynamics in complete heart block at various heart rates. Circulation 30:542–543

    PubMed  CAS  Google Scholar 

  8. Sowton E (1964) Hemodynamic studies in patients with artificial pacemakers. Br Heart 26:737–746

    Article  CAS  Google Scholar 

  9. Videem JS, Juany SK, Bazgan ID et al (1986) Hemodynamic comparison of ventricular pacing, atrioventricular sequential pacing and atrial synchronous ventricular pacing using radionuclide ventriculography. Am J Car diol 57:1305–1308

    Article  Google Scholar 

  10. Norlander R, Pehrsson SK, Astrom H et al (1987) Myocardial demands of atrialtriggered versus fixed-rate ventricular pacing in patients with complete heart block. Pacing Clin Electrophysiol 10:1154–1159

    Article  Google Scholar 

  11. Leclercq C, Gras D, Le Helloco A et al (1995) Hemodynamic importance of preserving the normal sequence of ventricular activation in permanent cardiac pacing. Am Heart J 129:1133–1141

    Article  PubMed  CAS  Google Scholar 

  12. Rowe GG, Stenlund RR, Thomsen JH et al (1969) Coronary and systemic hemodynamic effects of cardiac pacing in man with complete heart block. Circulation 40:839–845

    Google Scholar 

  13. Brockman SK (1965) Cardiodynamics of complete heart block. Am J Cardiol 16:72–83

    Article  PubMed  CAS  Google Scholar 

  14. Vos MA, de Groot SH, Verduyn SC et al (1998) Enhanced susceptibility for acquired torsade de pointes arrhythmias in the dog with chronic, complete atrio-ventricular block is related to cardiac hypertrophy and electrical remodeling. Circulation 98:1125–1235

    PubMed  CAS  Google Scholar 

  15. Brockman SK, Stoney WS (1969) Congestive and heart failure and cardiac output in heart block and during pacing. Ann NY Acad Sci 167:534–545

    Article  PubMed  CAS  Google Scholar 

  16. Janousek J, Tomek V, Chaloupecky V et al (2004) Dilated cardiomyopathy associated with dual-chamber pacing in infants: improvement through either left ventricular cardiac resynchronization or programming the pacemaker off allowing intrinsic normal conduction. J Cardiovasc Electrophysiol 15:470–474

    Article  PubMed  Google Scholar 

  17. Tantengco MV, Thomas RL, Karpawich PP (2001) Left ventricular dysfunction after long-term right ventricular apical pacing in the young. J Am Coll Cardiol 37:2093–2100

    Article  PubMed  CAS  Google Scholar 

  18. Thambo JB, Bordachar P, Garrigue S et al (2004) Detrimental ventricular remodeling in patients with congenital complete heart block and chronic right ventricular apical pacing. Circulation 110:3766–3772

    Article  PubMed  Google Scholar 

  19. Peschar M, March AM, Verbenek X et al (2004) Site of right ventricular pacing determines left ventricular remodeling in patients with atrio-ventricular block. Heart Rhythm 1:245

    Google Scholar 

  20. Faerestrand S, Ohm O-J (1985) A time-related study of the hemodynamic benefit of atrioventricular synchronous pacing evaluated by Doppler echocardiography. Pacing Clin Electrophysiol 8:838–848

    Article  PubMed  CAS  Google Scholar 

  21. Bowman AW, Kovacs SJ (2004) Left atrial conduction volume is generated by deviation from the constant volume state of the left heart: a combined MRI-echocardiographic study. Am J Physiol Heart Circ 286:H2416–H2424

    Article  CAS  Google Scholar 

  22. Mehta D, Gilmour S, Ward DE et al (1989) Optimal atrioventricular delay at rest and during exercise in patients with dual chamber pacemakers: a non-invasive assessment by continuous wave Doppler. Br Heart J 61:161–166

    Article  PubMed  CAS  Google Scholar 

  23. Ritter P, Dib JC, Mahaut V et al (1995) New method for determining the optimal atrio-ventricular delay in patients paced in DDD mode for complete atrioventricular block. Pacing Clin Electrophysiol 18 (Part II):237

    Article  Google Scholar 

  24. Sutton R (1992) The atrioventricular interval: what considerations influence its programming? Eur Cardiac Pacing Electrophysiol 3:169

    Google Scholar 

  25. Dupot WD, Plummer WD Jr (1998) Power and sample size calculations for studies involving linear regression. Control Clin Trials 19:589–601

    Article  Google Scholar 

  26. Bedotto JB, Grayburn PA, Black WH et al (1990) Alterations in left ventricular relaxation during atrioventricular pacing in humans. J Am Coll Cardiol 15:658–664

    Article  PubMed  CAS  Google Scholar 

  27. Tanabe A, Mohri T, Ohga M et al (1990) The effects of pacing-induced left bundle branch block on left ventricular systolic and diastolic performances. Jpn Heart J 31:309–317

    PubMed  CAS  Google Scholar 

  28. Wiggers CJ (1925) The muscular reactions of the mammalian ventricles to artificial surface stimuli. Am J Physiol 73:346–378

    Google Scholar 

  29. Kosovsky BD, Scherlag BJ, Samaro AN (1968) Re-evaluation of the atrial contribution to ventricular function. Am J Cardiol 21:518–524

    Article  Google Scholar 

  30. Nielsen JC, Andersen HR, Thomsen PEB et al (1998) Heart failure and echocardiographic changes during long-term follow-up of patients with sick-sinus syndrome randomized to single-chamber atrial or ventricular pacing. Circulation 97:987–995

    PubMed  CAS  Google Scholar 

  31. Santini M, Alexidou G, Ansalone G et al (1990) Relation of prognosis in sick sinus syndrome to age, conduction defects and modes of permanent cardiac pacing. Am J Cardiol 65:729–735

    Article  PubMed  CAS  Google Scholar 

  32. Andersen HR, Nielsen JC, Thomsen PEB et al (1997) Long-term follow-up of patients from a randomised trial of atrial versus ventricular pacing for sick sinus syndrome. Lancet 350:1210–1216

    Article  PubMed  CAS  Google Scholar 

  33. Sweeny MO, Hellkamp AS, Ellenbogen KA et al (2003) Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation 107:2932–2937

    Article  Google Scholar 

  34. Wilkoff BL, Cook JR, Epstein AE et al (2002) Dual-chamber pacing or ventricular back-up pacing in patients with an implantable defibrillator. JAMA 288:3115–3123

    Article  PubMed  Google Scholar 

  35. Verbenek X, Vernooy K, Pesar M et al (2002) Quantification of interventricular synchrony during LBBB and ventricular pacing. Am J Physiol 283:H1370–H1378

    Google Scholar 

  36. Liu L, Tockman B, Girouard S et al (2002) Left ventricular resynchronization therapy in a canine model of left bundle branch block. Am J Physiol 282:H2238–H2244

    CAS  Google Scholar 

  37. Hirzel HO, Senn M, Nuesch K et al (1984) Thalium-201 scintigraphy in complete left bundle branch block. Am J Cardiol 53:764–769

    Article  PubMed  CAS  Google Scholar 

  38. Kaas DA, Chen CH, Curry C et al (1999) Improved left ventricular mechanics from acute VDD pacing in patients with dilated cardiomyopathy and ventricular conduction delay. Circulation 99:1567–1573

    Google Scholar 

  39. Dekker AL, Phelps B, Dijkam A et al (2004) Epicardial left ventricular lead placement for cardiac resynchronization therapy: optimal pace site selection with pressure-volume loops. J Thorac Cardiovasc Surg 27:1642–1647

    Google Scholar 

  40. Rabkin SW, Mathewson FAL, Tate RB (1980) Natural history of left bundle-branch block. Br Heart 43:164–169

    Article  CAS  Google Scholar 

  41. Schneider JF, Thomas HE Jr, Sorlie P et al (1981) Comparative features of newly acquired left and right bundle branch block in general population. The Framingham Study. Am J Car diol 47:931–940

    Article  CAS  Google Scholar 

  42. Khoury D, McAlister H, Wilkoff B et al (1989) Continuous right ventricular volume assessment by catheter measurement of impedance for antitachycardia system control. Pacing Clin Electrophysiol 12:1918–1926

    Article  PubMed  CAS  Google Scholar 

  43. Chirife R, Ortega DF, Salazar A (1993) Feasibility of measuring relative right ventricular volumes and ejection fraction with implantable rhythm control device. Pacing Clin Electrophysiol 16:1673–1683

    Article  PubMed  CAS  Google Scholar 

  44. Gasparini M, Denis A, Mantica M et al (2001) Hemodynamic sensors: what clinical value do they have in heart failure. In: Raviele A (ed) Cardiac arrhythmias. Springer Verlag Italia, Milan, pp 576–585

    Google Scholar 

  45. Artur W, Kaye GC (2001) Clinical use of intracardiac impedance: current applications and future perspectives. Pacing Clin Electrophysiol 24 (Pt I):500–506

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Italia

About this paper

Cite this paper

Taborsky, M. (2007). Hemodynamics in Standard Cardiac Pacing. In: Gulizia, M.M. (eds) Current News in Cardiology. Springer, Milano. https://doi.org/10.1007/978-88-470-0636-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0636-2_36

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0635-5

  • Online ISBN: 978-88-470-0636-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics