Skip to main content

Riassunto

L’osteoporosi è un disordine scheletrico caratterizzato da una compromissione della resistenza dell’osso che predispone a un aumentato rischio di frattura. La competenza meccanica dello scheletro deriva dall’integrazione di due componenti: la quantità del tessuto, comunemente indicata in termini di densità minerale e la sua qualità, che invece riflette le diverse, e in parte sconosciute, caratteristiche microarchitetturali. L’osteoporosi viene classicamente distinta in due grandi gruppi: osteoporosi primitiva e osteoporosi secondaria. L’osteoporosi primitiva a sua volta comprende l’osteoporosi idiopatica (giovanile e dell’adulto) e l’ osteoporosi involutiva.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Riggs BL, Melton LJ III (1983) Evidence for two distinct syndromes of involutional osteoporosis. Am J Med 75:899–901

    Article  CAS  PubMed  Google Scholar 

  2. Riggs BL, Kholsla S, Melton LJ III (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13:763–773

    Article  CAS  PubMed  Google Scholar 

  3. Riggs BL, Khosla S, Melton LJ (2001) The type I/type II model for involutional osteoporosis: update and modification based on new observations. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic Press, San Diego, pp 9–58

    Google Scholar 

  4. Brown MA, Haughton MA, Grant SF, Gunnell AS (2001) Genetic control of bone density and turnover: role of the collagen 1 alpha 1, estrogen receptor, and vitamin D receptor genes. J Bone Miner Res 16:758–764

    Article  CAS  PubMed  Google Scholar 

  5. Kiel DP, Myers RH, Cupples LA et al (1997) The BsmI vitamin D receptor restriction fragment length polymorphism (bb) influences the effect of calcium intake on bone mineral density. J Bone Miner Res 12:1049–1057

    Article  CAS  PubMed  Google Scholar 

  6. Ralston SH (1997) Science, medicine and the future: osteoporosis. BMJ 315:469–472

    CAS  PubMed  Google Scholar 

  7. Ralston SH (2001) Genetics of osteoporosis. Rev Endocr Metab Disord 2:13–21

    Article  CAS  PubMed  Google Scholar 

  8. Eastell R (2003) Pathogenesis of postmenopausal osteoporosis. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 5th ed. Lippincott Williams & Wilkins, Philadelphia, pp 314–316

    Google Scholar 

  9. Heaney RP (1994) The bone-remodeling transient: implications for the interpretation of clinical studies of bone mass change. J Bone Miner Res 9:1515–1523

    Article  CAS  PubMed  Google Scholar 

  10. Marcus R (1996) The nature of osteoporosis. J Clin Endocrinol Metab 81:1–5

    Article  CAS  PubMed  Google Scholar 

  11. Garnero P, Sornay-Rendu E, Chapuy M, Delmas PD (1996) Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res 11:337–349

    Article  CAS  PubMed  Google Scholar 

  12. Marcus R (2002) Post-menopausal osteoporosis. Best Pract Res Clin Obstet Gynaecol 16:309–327

    Article  PubMed  Google Scholar 

  13. Hofbauer LC, Khosla S, Dunstan CR et al (2000) The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 15:2–12

    Article  CAS  PubMed  Google Scholar 

  14. Raisz LG (1996) Estrogen and bone: new pieces to the puzzle. Nat Med 2:1077–1078

    Article  CAS  PubMed  Google Scholar 

  15. Riggs BL, Khosla S, Melton LJ III (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302

    Article  CAS  PubMed  Google Scholar 

  16. Young MM, Nordin BEC (1967) Effects of natural and artificial menopause on plasma and urinary calcium and phosphorus. Lancet 2:118–120

    Article  Google Scholar 

  17. Gennari C, Agnusdei D, Nardi P, Civitelli R (1990) Estrogen preserves a normal intestinal responsiveness to 1,25-dihydroxyvitamin D3 in oophorectomized women. J Clin Endocrinol Metab 71:1288–1293

    Article  CAS  PubMed  Google Scholar 

  18. Ettinger B, Genant HK, Cann CE (1985) Long-term estrogen replacement therapy prevents bone loss and fractures. Ann Intern Med 102:319–324

    CAS  PubMed  Google Scholar 

  19. Stevenson LC, Cust MP, Gangar KF et al (1990) Effects of transdermal versus oral hormone replacement therapy on bone density in spine and proximal femur in postmenopausal women. Lancet 336:265–269

    Article  CAS  PubMed  Google Scholar 

  20. Christiansen C, Christensen MS, McNair PL et al (1980) Prevention of early menopausal bone loss: conducted 2-year study. Eur J Clin Invest 10:273–279

    Article  CAS  PubMed  Google Scholar 

  21. Parfitt AM, Mundy GR, Roodman GD et al (1996) A new model for the regulation of bone resorption, with particular reference to the effects of bisphosphonates. J Bone Miner Res 11:150–159

    Article  CAS  PubMed  Google Scholar 

  22. Compston JE (2001) Sex steroids and bone. Physiol Rev 81:419–447

    CAS  PubMed  Google Scholar 

  23. Bismar H, Diel I, Ziegler R, Pfeilschifter J (1995) Increased cytokine secretion by human bone marrow cells after menopause or discontinuation of estrogen replacement. J Clin Endocrinol Metab 80:3351–3355

    Article  CAS  PubMed  Google Scholar 

  24. Khosla S, Peterson JM, Egan K et al (1994) Circulating cytokine levels in osteoporotic and normal women. J Clin Endocrinol Metab 79:707–711

    Article  CAS  PubMed  Google Scholar 

  25. Zheng SX, Vrindts Y, Lopez M et al (1997) Increase in cytokine production (IL-1 beta, IL-6, TNFalpha but not INF-gamma, GM-CSF or LIF) by stimulated whole blood cells in postmenopausal osteoporosis. Maturitas 26:63–71

    Article  CAS  PubMed  Google Scholar 

  26. Pacifici R (1996) Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 11:1043–1051

    Article  CAS  PubMed  Google Scholar 

  27. Pacifici R, Vannice JL, Rifas L, Kimble RB (1993) Monocytic secretion of interleukin-1 receptor antagonist in normal and osteoporotic women: effects of menopause and estrogen/progesterone therapy. J Clin Endocrinol Metab 77:1135–1141

    Article  CAS  PubMed  Google Scholar 

  28. Suda T, Takahashi N, Udagawa N et al (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357

    Article  CAS  PubMed  Google Scholar 

  29. Kimble RB, Matayoshi AB, Vannice JL et al (1995) Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period. Endocrinology 136:3054–3061

    Article  CAS  PubMed  Google Scholar 

  30. Ammann P, Rizzoli R, Bonjour JP et al (1997) Transgenic mice expressing soluble tumor necrosis factor-receptor are protected against bone loss caused by estrogen deficiency. J Clin Invest 99:1699–1703

    Article  CAS  PubMed  Google Scholar 

  31. Lorenzo J, Naprta A, Rao Y et al (1997) Mice deficient in the functional interleukin-1 receptor I (IL-1R1) do not lose bone mass after ovariectomy. J Bone Miner Res 12:S126

    Google Scholar 

  32. Riggs BL, Khosla S, Atkinson EJ et al (2003) Evidence that type I osteoporosis results from enhanced responsiveness of bone to estrogen deficiency. Osteoporos Int 14:728–733

    Article  CAS  PubMed  Google Scholar 

  33. Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ III (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 7:221–227

    Article  CAS  PubMed  Google Scholar 

  34. Papaioannou A, Watts NB, Kendler DL et al (2002) Diagnosis and management of vertebral fractures in elderly adults. Am J Med 113:220–228

    Article  PubMed  Google Scholar 

  35. Vogt TM, Ross PD, Palermo L et al (2000) Vertebral fracture prevalence among women screened for the Fracture Intervention Trial and a simple clinical tool to screen for undiagnosed vertebral fractures. Fracture Intervention Trial Research Group. Mayo Clin Proc 75:888–896

    Article  CAS  PubMed  Google Scholar 

  36. Grigoryan M, Guermazi A, Roemer FW et al (2003) Recognizing and reporting osteoporotic vertebral fractures. Eur Spine J 12(Suppl 2):S104–S112

    Article  PubMed  Google Scholar 

  37. Gehlbach SH, Bigelow C, Heimisdottir M et al (2001) Recognition of vertebral fracture in a clinical setting. Osteoporos Int 11:577–582

    Article  Google Scholar 

  38. Jalava T, Sarna S, Pylkkanen L et al (2003) Association between vertebral fracture and increased mortality in osteoporotic patients. J Bone Miner Res 18:1254–1260

    Article  PubMed  Google Scholar 

  39. Lindsay R, Silverman SL, Cooper C et al (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323

    Article  CAS  PubMed  Google Scholar 

  40. Black DM, Arden NK, Palermo L et al (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14:821–828

    Article  CAS  PubMed  Google Scholar 

  41. Klotzbuecher CM, Ross PD, Landsman PB et al (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15:721–739

    Article  CAS  PubMed  Google Scholar 

  42. Greendale GA, De Amicis TA, Bucur A et al (2000) A prospective study of the effect of fracture on measured physical performance: results from the Mac Arthur Study-MAC. J Am Geriatr Soc 48:546–549

    CAS  PubMed  Google Scholar 

  43. Huang C, Ross PD, Wasnich RD (1996) Vertebral fracture and other predictors of physical impairment and health care utilization. Arch Intern Med 156:2469–2475

    Article  CAS  PubMed  Google Scholar 

  44. Truumees E (2003) Medical consequences of osteoporotic vertebral compression fractures. Instr Course Lect 52:551–558

    PubMed  Google Scholar 

  45. Schlaich C, Minne HW, Bruckner T et al (1998) Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int 8:261–827

    Article  CAS  PubMed  Google Scholar 

  46. Genant HK, Cooper C, Poor G et al (1999) Interim report and recommendations of the World Health Organization Task-Force for Osteoporosis. Osteoporos Int 10:259–264

    Article  CAS  PubMed  Google Scholar 

  47. Looker AC, Wahner HW, Dunn WL et al (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–489

    Article  CAS  PubMed  Google Scholar 

  48. Siris ES, Miller PD, Barrett-Connor E et al (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women. Results from the National Osteoporosis Risk Assessment. JAMA 286:2815–2822

    Article  CAS  PubMed  Google Scholar 

  49. Ott SM, Kilcoyne RF, Chesnut CH III (1987) Ability of four different techniques of measuring bone mass to diagnose vertebral fractures in postmenopausal women. J Bone Miner Res 2:201–210

    Article  CAS  PubMed  Google Scholar 

  50. Hui SL, Slemenda CW, Johnston CC Jr (1989) Baseline measurement of bone mass predicts fracture in white women. Ann Intern Med 111:355–361

    CAS  PubMed  Google Scholar 

  51. Greenspan SL, Luckey MM (2003) Evaluation of postmenopausal osteoporosis. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 5th ed. Lippincott Williams & Wilkins, Philadelphia, pp 355–360

    Google Scholar 

  52. Tannenbaum C, Clark J, Schwartzman K et al (2002) Yield of laboratory testing to identify secondary contributors to osteoporosis in otherwise healthy women. J Clin Endocrinol Metab 87:4431–4437

    Article  CAS  PubMed  Google Scholar 

  53. Crandall C (2003) Laboratory workup for osteoporosis. Which tests are most cost-effective? Postgrad Med 114:35–38, 41–44

    PubMed  Google Scholar 

  54. Writing group for the Women’s Health Initiative Investigators (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women. JAMA 288:321–333

    Article  Google Scholar 

  55. Warren MP (2004) A comparative review of the risks and benefits of hormone replacement therapy regimens. Am J Obstet Gynecol 190:1141–1167

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

D’Erasmo, E., Romagnoli, E. (2009). Osteoporosi primitiva. In: Osteoporosi e malattie metaboliche dell’osso. Springer, Milano. https://doi.org/10.1007/978-88-470-1357-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1357-5_6

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1356-8

  • Online ISBN: 978-88-470-1357-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics