Skip to main content

Abstract

Echocardiography represents a basic tool for diagnosis of cardiac pathology. During the last few years technological advances have led to new imaging methods with more applications. The availability of wide-band transducers has been fundamental for the utilization of ultrasound contrast agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Villarraga H, Foley D, Chung S, et al. Harmonic imaging during contrast echocardiography: basic principles and potential clinical value. In Kluwer Academic Publishers(ed). Advances In echo imaging using contrast enhancement 2nd ed. Nanda N, Schlief R, and Goldberg B.1997:433–450

    Chapter  Google Scholar 

  2. Spencer K, Berdnarz J, Rafter P, et al. Use of harmonic imaging without echocardiographic contrast to improve two-dimensional image quality. Am J Cardiol 1998;82(6):794–799

    Article  Google Scholar 

  3. Caidahl K, Kazzam E, Lidberg J, et al. New concept in echocardiography: harmonic imaging of tissue without use of contrast agent. The Lancet 1998;352(9136):1264–70

    Article  Google Scholar 

  4. Carerj S, Trono A, Zito C, et al. The second tissue harmonic signal: from physics principles to clinical aplication. Ital Heart J 2001;2(10 suppl):1078–86

    CAS  Google Scholar 

  5. Karsprzak J, Paelinck B, Folkert J, et al. Comparison of native and contrast-enhanced harmonic echocardiography for visualization of lef ventricular border. Am J Cardiol 1998;83(2):211–217

    Google Scholar 

  6. Kornbluth M, Liang D, Paloma A, Schnittger I. Native tissue harmonic imaging improves endocardial border definition and visualization of cardiac structures. J Am Soc Echocardiogr 1998;11:693–701

    Article  PubMed  CAS  Google Scholar 

  7. Senior R, Soman P, Khattar RS, and Lahiri A. Improved endocardial visualization with second harmonic imaging compared with fundamental two dimensional echocardiographic imaging. Am Heart J 1999;138(1Pt1):163–8

    Article  PubMed  CAS  Google Scholar 

  8. Skolnick D, Sawada S, Feingenbaum H, and Segar S. Enhanced endocardial visualization with noncontrast harmonic imaging during stress echocardiography. J Am Soc Echocardiogr 1999;12(7):559–63

    Google Scholar 

  9. Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol 1968;3:356–366

    Article  PubMed  CAS  Google Scholar 

  10. Feinstein SB, Ten Cate FJ, Zwehl W et al. Two dimensional contrast echocardiography. In vitro development and quantitative analysis of eho contrast agent. J Am Coll Cardiol 1984;3:14

    Article  PubMed  CAS  Google Scholar 

  11. Porter T, Xiei F, Kilzer K: Intravenous perfluoro-propane-exposed sonicated dextrose albumin produces myocardial ultrasound contrast that correlates with coronary blood flow. J Am Soc Echocardiogr 1995;8(5Pt1):710–718

    Article  PubMed  CAS  Google Scholar 

  12. Cheng S, Dy T, and Feintein S. Contrast echocardiography: Review and future directions. Am J Cardiol 1998;81(12A):41G–48G

    Article  PubMed  CAS  Google Scholar 

  13. Firschke C, Lindner J, Wei K, et al: Myocardial perfusion imaging in the setting of coronary artery stenosis and acute myocardial infarction using venous injection of a second generation echocardiographic contrast agent. Circulation 1997;96(3):959–67

    Google Scholar 

  14. Skyba DM, Camarano G, Goodman NC, et al: Hemodynamic characteristics, myocardial kinetics and microvascular rheology of FS-069, a second generation echocardiographic contrast agent capable of producing myocardial opacification from a venous injection. J Am Coll Cardiol 1996;28:1292–300

    Article  PubMed  CAS  Google Scholar 

  15. DeMaria AN, Bommer WJ, Riggs K et al. Echocardiography visualization of myocardial perfusion by left heart and intracoronary injections of echo contrast agents (abstr). Circulation 1980 ;62(suppl II):143

    Google Scholar 

  16. Lindner J. Evolving applications for contrast ultrasound. Am J Cardiol 2002;90(suppl):72J–80J

    Article  PubMed  Google Scholar 

  17. Burns PN, Powers JE, Simpson DH , et al. Harmonic imaging: principles and preliminary results. Clin Radiol 1996;51(suppl):50–5

    PubMed  Google Scholar 

  18. Porter TR, Xie F, Kricsfeld D et al. Improved myocardial contrast with second harmonic transient ultrasound response imaging in humans using intravenous perflorocarbon-exposed sonicated dextrose albumin. J Am Coll Cardiol 1996;27:1497–501

    Article  PubMed  CAS  Google Scholar 

  19. Kaul S: Myocardial contrast echocardiography. Curr Probl Cardiol 1997; 22:549–640

    Article  PubMed  CAS  Google Scholar 

  20. De Jong N, Frinking PJ, Bouakaz A, et al. Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera. Ultrasound Med Biol 2000;26(3):487–92

    Article  Google Scholar 

  21. Forsberg F, Shi W and Goldberg B. Subharmonic imaging of contrast agents. Ultrasonics 2000;38(1–8):93–8

    Article  Google Scholar 

  22. Chomas J, Dayton P, May D, and Ferrara K, Nondestructive subharmonic imaging. IEEE Trans Ultrason Ferroelectr Freq Control 2002;49(7):883–92

    Article  Google Scholar 

  23. Calliada F, Campani R, Bottinelli O, and Sommaruga MG Ultrasound contrast agents: basic principles. Eur J Radiol 1998;27 suppl 2:S157–60

    Article  PubMed  Google Scholar 

  24. Kuersten B, Murthy T, Li P, et al. Ultraharmonic myocardial contrast imaging. In vivo experimental and clinical data from a novel technique.J Am Soc Echocardiogr 2001;14:910–6

    Article  PubMed  CAS  Google Scholar 

  25. Lindner J. Contrast echocardiography. Curr Probl Cardiol 2002;27:449–520

    Article  Google Scholar 

  26. Raisinghani A and DeMaria A. Physical principles of microbubbles ultrasound contrast agents. Am J Cardiol 2002;90(suppl 10 A):3J–7J

    Article  PubMed  Google Scholar 

  27. Leong Poi H, Song J, Rim SJ, et al. Influence of microbubble properties on ultrasound signal: implications for low-power perfusion imaging. J Am Soc Echocardiogr 2002;15(10 Pt 2):1269–76.

    Article  Google Scholar 

  28. Michel Schneider. Design of an ultrasound contrast agent for myocardial perfusion. Echocardiography 2000;17(6pt2):S11–S16

    Article  Google Scholar 

  29. Villanueva FS, Jankowski RJ, Manaugh C, Wagner WR. Albumin microbubble adherence to human coronary endothelium: implications for assessment of endothelial function using myocardial contrast echocardiography. J Am Coll Cardiol 1997;30:689–93

    Article  PubMed  CAS  Google Scholar 

  30. Fisher NG, Christiansen JP, Klibanov A, et al. Influence of microbubbles surface charge on capillary transit and myocardial contrast enhancement. J Am Coll Cardiol 2002;40(4):811–9

    Article  Google Scholar 

  31. Porter TR, Xie F: Visually discernible myocardial echocardiographyc contrast after intravenous injection of sonicated dextrose albumin microbubbles containing high molecular weight, less soluble gases. J Am Coll Cardiol 1995;25(2):509–515

    Article  Google Scholar 

  32. Wei K, Skyba D, Firschke C, et al. Interaction between microbubbles and ultrasound: in vitro and in vivo observations. J Am Coll Cardiol 1997;29(5):1081–1088

    Article  Google Scholar 

  33. De Jong N, Bouakaz A, Ten Cate FJ. Contrast harmonic imaging. Ultrasonics 2002;40(1–8):567–73

    Article  Google Scholar 

  34. Von Bibra H, Sutherland G, Becher H , et al. Clinical evaluation of left heart Doppler contrast enhancement by a saccharide-based transpulmonary contrast agent. The Levovist Cardiac Working Group. J Am Coll Cardioll 1995;25(2):500–508

    Article  Google Scholar 

  35. Porter TR, Xie F, Kricsfeld et al: improved endocardial border resolution during dobutamine stress echocardiography with intravenous sonicated dextrose albumin. J Am Coll Cardiol 1994;23 (6):1440–1443

    Article  PubMed  CAS  Google Scholar 

  36. Moreno R, Zamorano J, Almería C et al. Usefulness of contrast agents in the diagnosis of left venticular pseudoaneurysm after acute myocardial infarction. Eur J Echocardiogr 2002;3(2):111–6

    Article  Google Scholar 

  37. Zamorano J, Sanchez V, Moreno R, et al. Contrast agents provide a faster learning curve in dipyridamole stress echocardiography. Int J cardiovasc imaging 2002;18(6):415–9

    Article  Google Scholar 

  38. Heinle S, Noblin J, Goree-Best P, et al. Assessment of Myocardial Perfusion by Harmonic Power Doppler Imaging at Rest and During Adenosine Stress. Comparison with 99m Tc Sestamibi SPECT Imaging. Circulation 2000;102:55–60

    Article  PubMed  CAS  Google Scholar 

  39. Moreno R, Zamorano J, Serra V, et al. Weak concordance between wall motion and microvasculature status after acute myocardial infarction. Study with myocardial contrast echocardiography in real time with power modulation. Eur J Echocardiogr 2002;3:89–94

    Article  PubMed  CAS  Google Scholar 

  40. Porter TR, Xie F, Kricsfeld A, et al. Reduction in left ventricular attenuation and improvement in posterior myocardial contrast with high molecular weight intravenous perfluorocarbon-exposed sonicated dextrose albumin microbubbles. J Am Soc Echocardiogr 1996;9:437–441

    Article  PubMed  CAS  Google Scholar 

  41. Witt S. Implementing microbubble contrast in the echocardiography laboratory: a sonographer’s perpective. Am J Cardiol 2002;90(supp);15j–16j

    Article  PubMed  Google Scholar 

  42. Senior R, Kaul S, Soman P and Lahiri A. Power Doppler harmonic imaging: a feasibility study of a new technique for the assessment of myocardial perfusion. Am Heart J 2000;139:245–51

    PubMed  CAS  Google Scholar 

  43. Schneider M, Arditi M, Barrau M-B, et al. BR1: A new ultrasonographic contrast agent based on sulfur hexafluoride-filled microbubbles. Invest Radiol 1995;30(8):451–457

    Article  Google Scholar 

  44. Morel D, Schwieger I, Hohn L, et al. Human Pharmacokinetics and safety evaluation of SonoVue™, a new contrast agent for ultrasound imaging. Invest Radiol 2000;35(1):80–85

    Article  Google Scholar 

  45. Senior R, Andersson O, Caidahl K, et al. Enhanced left ventricular endocardial border delineation with an intravenous injection of SonoVue, a new echocardigraphic contrast agent: a European multicenter study. Echocardiogr 2000;17(8):705–11

    Article  Google Scholar 

  46. Broillet A, Puginier J, Ventrone R, and Schneider M. Assessment of myocardial perfusion by intermittent harmonic power Doppler using SonoVue, a new ultrasound contrast agent. Invest Radiol 1998;33(4):209–215

    Article  Google Scholar 

  47. Bokor D. Diagnostic efficacy of SonoVue. Am J Cardiol 2000;86(suppl):19G–24G

    Article  PubMed  CAS  Google Scholar 

  48. Kuersten B, Nahar T, and Vannan M. Methods of contrast administration for myocardial perfusion imaging: continuous infusion versus bolus injection. Am J Cardiol 2002;90(suppl):35j–37j

    PubMed  Google Scholar 

  49. Wei K, Jayaweera A, Firoozan S, et al. Basis for detection of stenosis using venous administration of microbubbles during myocardial contrast echocardiography: bolus or continuous infusion? J Am Coll Cardiol 1998;32(1):252–260

    Article  Google Scholar 

  50. Mayer S and Grayburn P. Myocardial contrast agents: recent advances and future directions. Progress in cardiovascular diseases 2001;44(1):33–44

    Article  Google Scholar 

  51. Wei K, Ragosta M, Thorpe J et al. Noninvasive quantification of coronary blood flow reserve in humans using myocardial contrast echocardiography. Circularion 2001;103:2560

    Article  CAS  Google Scholar 

  52. Rubin J, Bude R, Carson P et al. Power Doppler US: a potentially useful alternative to mean frequency-based colour Doppler US. Radiology 1994;190(3):853–6

    Google Scholar 

  53. Moreno R, Zamorano JL, Serra V, et al. Evaluation of myocardial perfusion with grey-scale Ultra-harmonic and multiple-frame triggering. Is there a need for quantification. Int J Cardiol 2003. In press

    Google Scholar 

  54. Poi H, Le E, Rim S-J, et al. Quantification of myocardial perfusion and determination of coronary stenosis severity during hyperemia using real-time myocardial contrast echocardiography. J Am Soc Echocardiogr 2001;14:1173–82

    Article  Google Scholar 

  55. Kaul S. Myocardial contrast echocardiography: basic principles. Progress in Cardiovascular Diseases 2001;44(1):1–11

    Article  Google Scholar 

  56. Mor-Avi V, Caiani E, Collins K, et al. Combined assessment of myocardial perfusion and regional left ventricular function by analysis of contrast-enhanced power modulation images. Circulation 2001;104:352

    Article  PubMed  CAS  Google Scholar 

  57. Moreno R, Zamorano JL, Serra V, et al. Myocardial perfusion in real-time using Power Modulation. Evidence for a microvasculature damage after acute myocardial infarction. Int J Cardiol 2003. In press

    Google Scholar 

  58. Masugata H, Peters B, Lafitte S, et al. Quantitative assessment of myocardial perfusion during graded coronary stenosis by real-time myocardial contrast echo refilling curves. J Am Coll cardiol 2001;37:262–9

    Article  PubMed  CAS  Google Scholar 

  59. Desco M, Ledesma-Carbrugo MJ, Santos A, García-Fernández MA, Marcos-Alberca P, Malpica N, Antoranz C, García-Barreno P. Coherent contrast imaging quantification for myocardial perfusion assessment. J Am Cold Cardiol 2001;37(suppl):495A

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Serra, V., Fernández, M.A.G., Zamorano, J.L. (2004). Microbubbles: Basic Principles. In: Contrast Echocardiography in Clinical Practice. Springer, Milano. https://doi.org/10.1007/978-88-470-2125-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2125-9_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2174-7

  • Online ISBN: 978-88-470-2125-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics