Skip to main content
  • 136 Accesses

Abstract

Monitoring in the perioperative period is traditionally performed for two reasons; firstly, to warn of life-threatening abnormalities, and secondly, to allow the maintenance of stable physiology. Although both essential, neither are themselves therapeutic. The concept of the use of the results of monitoring to guide changes in clinical treatment, which are themselves therapeutic and are greater than those required for maintaining normal physiology, is relatively new.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuri SF, Daley J, Henderson W et al (1995) The national veterans surgical risk study: risk adjustment for the comparative assessment of the quality of surgical care. J Am Coll Surg 180:519–531

    Google Scholar 

  2. Edwards AE, Seymour DG, McCarthy JM et al (1996) A 5-year survival study of general surgical patients aged 65 and over. Anaesthesia 51:3–10

    Article  PubMed  CAS  Google Scholar 

  3. Mella J, Biffin A, Radcliffe AG et al (1997) Population-based audit of colorectal cancer management in two UK health regions. Colorectal Cancer Working Group, Royal College of Surgeons of England Clinical Epidemiology and Audit Unit. Br J Surg 84:1731–1736

    Article  PubMed  CAS  Google Scholar 

  4. Cook TM, Day CJE (1998) Hospital mortality after urgent and emergency laparotomy in patients aged 65 and over. Risk and prediction of risk using multiple logistic regression analysis. Br J Anaesth 80:776–781

    Article  PubMed  CAS  Google Scholar 

  5. Fowkes FGR, Lunn SC, Farrow SC et al (1982) Epidemiology in anaesthesia. III: Mortality risk in patients with coexisting physical disease. Br J Anaesth 54:819–824

    Article  PubMed  CAS  Google Scholar 

  6. Schultz RJ, Whitfield GF, LaMura JJ et al (1985) The role of physiologic monitoring in patients with fractures of the hip. J Trauma 25:309–316

    Article  PubMed  CAS  Google Scholar 

  7. Shoemaker WC, Appel PL, Kram HB et al (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94:1176–1186

    Article  PubMed  CAS  Google Scholar 

  8. Boyd O, Grounds RM, Bennett ED (1993) A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA 270:2699–2707

    Article  PubMed  CAS  Google Scholar 

  9. Berlauk JF, Abrams JH, Gilmour IJ et al (1991) Preoperative optimisation of cardiovascular hemodynamics improves outcome in peripheral vascular surgery. Ann Surg 214:289–297

    Article  PubMed  CAS  Google Scholar 

  10. Valentine RJ, Duke ML, Inman MH et al (1998) Effectiveness of pulmonary artery catheters in aortic surgery: a randomized trial. J Vase Surg 27:203–211

    Article  CAS  Google Scholar 

  11. Bender JS, Smith-Meek MA, Jones CE (1997) Routine pulmonary artery catheterization does not reduce morbidity and mortality of elective vascular surgery: results of a prospective, randomized trial. Ann Surg 226:229–236

    Article  PubMed  CAS  Google Scholar 

  12. Ziegler DW, Wright JG, Choban PS et al (1997) A prospective randomized trial of preoperative “optimization” of cardiac function in patients undergoing elective peripheral vascular surgery. Surgery 122:584–592

    Article  PubMed  CAS  Google Scholar 

  13. Ueno S, Tanabe G, Yamada H et al (1998) Response of patients with cirrhosis who have undergone partial hepatectomy to treatment aimed at achieving supranormal oxygen delivery and consumption. Surgery 123:278–286

    Article  PubMed  CAS  Google Scholar 

  14. Fleming A, Bishop M, Shoemaker W et al (1992) Prospective trial of supranormal values as goals of resuscitation in severe trauma. Arch Surg 127:1175–1179

    Article  PubMed  CAS  Google Scholar 

  15. Bishop MH, Shoemaker WC, Appel PL et al (1995) Prospective, randomized trial of survivor values of cardiac index, oxygen delivery, and oxygen consumption as resuscitation endpoints in severe trauma [see comments]. J Trauma 38:780–787

    Article  PubMed  CAS  Google Scholar 

  16. Durham RM, Neunaber K, Mazuski JE et al (1996) The use of oxygen consumption and delivery as endpoints for resuscitation in critically ill patients. J Trauma 41:32–39

    Article  PubMed  CAS  Google Scholar 

  17. Mythen MG, Webb AR (1995) Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 130:423–429

    Article  PubMed  CAS  Google Scholar 

  18. Sinclair S, James S, Singer M (1997) Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. Br Med J 315:909–912

    Article  CAS  Google Scholar 

  19. Brinkmann A, Calzia E, Trager K et al (1998) Monitoring the hepato-splanchnic region in the critically ill patient. Intensive Care Med 24:542–556

    Article  PubMed  CAS  Google Scholar 

  20. Fiddian-Green RG, Gantz NM (1987) Transient episodes of sigmoid ischemia and their relation to infection from intestinal organisms after abdominal aortic operations. Crit Care Med 15:835–839

    Article  PubMed  CAS  Google Scholar 

  21. Edouard AR, Degremont AC, Duranteau J et al (1994) Heterogeneous regional vascular responses to simulated transient hypovolaemia in man. Intensive Care Med 20:414–420

    Article  PubMed  CAS  Google Scholar 

  22. Nelson DP, Beyer C, Samsel RW et al (1987) Pathological supply dependence of O2 uptake during bacteremia in dogs. J Appl Physiol 63:1487–1492

    PubMed  CAS  Google Scholar 

  23. Pastores SM, Katz DP, Kvetan V (1996) Splanchnic ischemia and gut mucosal injury in sepsis and the multiple organ dysfunction syndrome. Am J Gastroenterol 91:1697–1710

    PubMed  CAS  Google Scholar 

  24. Grum CM, Fiddian-Green RG, Pittenger GL et al (1984) Adequacy of tissue oxygenation in intact dog intestine. J Appl Physiol 56:1065–1069

    PubMed  CAS  Google Scholar 

  25. Elizalde JI, Hernandez C, Llach J et al (1998) Gastric intramucosal acidosis in mechanically ventilated patients: role of mucosal blood flow. Crit Care Med 26:827–832

    Article  PubMed  CAS  Google Scholar 

  26. Antonsson JB, Boyle III CC, Kruithoff KL et al (1990) Validation of tonometric measurement of gut intramural pH during endotoxemia and mesenteric occlusion in pigs. Am J Physiol 259:G519–G523

    PubMed  CAS  Google Scholar 

  27. Fiddian-Green RG (1995) Gastric intramucosal pH, tissue oxygenation and acid-base balance. Br J Anaesth 74:591–606

    Article  PubMed  CAS  Google Scholar 

  28. Benjamin E, Polokoff E, Oropello JM et al (1992) Sodium bicarbonate administration affects the diagnostic accuracy of gastrointestinal tonometry in acute mesenteric ischemia. Crit Care Med20:1181–1183

    Article  CAS  Google Scholar 

  29. Schlichtig R, Bowles SA (1994) Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol 76:2443–2451

    PubMed  CAS  Google Scholar 

  30. Boyd O, Mackay CJ, Lamb G et al (1993) Comparison of clinical information gained from routine blood-gas analysis and from gastric tonometry for intramural pH [see comments]. Lancet 341:142–146

    Article  PubMed  CAS  Google Scholar 

  31. Rhodes A, Boyd O, Bland JM et al (1997) Routine blood-gas analysis and gastric tonometry: a reappraisal [letter]. Lancet 350:413

    Article  PubMed  CAS  Google Scholar 

  32. Fiddian-Green RG, Pittenger G, Whitehouse Jr WM (1982) Back-diffusion of CO2 and its influence on the intramural pH in gastric mucosa. J Surg Res 33:39–48

    Article  PubMed  CAS  Google Scholar 

  33. Heard SO, Helsmoortel CM, Kent JC et al (1991) Gastric tonometry in healthy volunteers: Effect of ranitidine on calculated intramural pH. Crit Care Med 19:271–274

    Article  PubMed  CAS  Google Scholar 

  34. Calvet X, Baigorri F, Duarte M et al (1998) Effect of ranitidine on gastric intramucosal pH in critically ill patients. Intensive Care Med 24:12–17

    Article  PubMed  CAS  Google Scholar 

  35. Ivatury RR, Simon RJ, Islam S et al (1996) A prospective randomized study of end points of resuscitation after major trauma: global oxygen transport indices versus organ-specific gastric mucosal pH. J Am Coll Surg 183:145–154

    PubMed  CAS  Google Scholar 

  36. Gutierrez G, Palizas F, Doglio G et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339:195–199

    Article  PubMed  CAS  Google Scholar 

  37. Marik PE (1993) A better predictor of multiorgan dysfunction syndrome and death than oxygen-derived variables in patients with sepsis. Chest 104:225–229

    Article  PubMed  CAS  Google Scholar 

  38. Gomershall CD, Joynt GM, Ho KM et al (1997) Gastric tonometry and prediction of outcome in the critically ill. Arterial to intramucosal pH gradient and carbon dioxide gradient. Anaesthesia 52:619–623

    Article  Google Scholar 

  39. Maynard N, Bihari D, Beale R et al (1993) Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA 270:1203–1210

    Article  PubMed  CAS  Google Scholar 

  40. Smithies M, Yee TH, Jackson L et al (1994) Protecting the gut and liver in the critically ill: effects of dopexamine. Crit Care Med 22:789–795

    Article  PubMed  CAS  Google Scholar 

  41. Boyd O, Bennett ED (1996) Enhancement of perioperative tissue perfusion as a therapeutic strategy for major surgery. New Horiz 4:453–465

    PubMed  CAS  Google Scholar 

  42. Heyland DK, Cook DJ, King D et al (1996) Maximizing oxygen delivery in critically ill patients: a methodologic appraisal of the evidence [see comments]. Crit Care Med 24:517–524

    Article  PubMed  CAS  Google Scholar 

  43. Ivanov RI, Allen J, Sandham JD et al (1997) Pulmonary artery catheterization: a narrative and systematic critique of randomized controlled trials and recommendations for the future. New Horiz 5:268–276

    PubMed  CAS  Google Scholar 

  44. Hayes MA, Timmins AC, Yau EH et al (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330:1717–1722

    Article  PubMed  CAS  Google Scholar 

  45. Gattinoni L, Brazzi L, Pelosi P et al (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 333:1025–1032

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia

About this paper

Cite this paper

Boyd, O., Rhodes, A. (1999). Therapeutic Monitoring in the Perioperative Period. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2145-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2145-7_30

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0051-3

  • Online ISBN: 978-88-470-2145-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics