Skip to main content

Clinical and Paraclinical Outcomes for Treatment Trials in Multiple Sclerosis

  • Conference paper
Magnetic Resonance Techniques in Clinical Trials in Multiple Sclerosis

Part of the book series: Topics in Neuroscience ((TOPNEURO))

  • 67 Accesses

Abstract

Testing the efficacy of treatments potentially able to modify the course of multiple sclerosis (MS) is more than an issue, as the natural history of this disease is quite variable from patient to patient and in the same patient from time to time [1]. In about 85% of patients, the disease begins with an acute attack, followed by a partial or complete remission. In few cases (2%–4%), the acute attack is followed by a progressive course, with or without plateaus (the so-called transitional form). Most patients enter a relapsing-remitting course, during which they may accumulate some impairment or disability due to the incomplete recovery from relapses. After 10 years, about 50% of these patients enter the progressive course (secondary progressive MS), with or without superimposed relapses; this figure raises to about 80% after 20 years of disease [2-4]. About 15% of the patients have a progressive course from the onset of the disease, without relapses (primary progressive MS) or with superimposed relapses (progressive relapsing MS) [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: Results of an international survey. Neurology 46: 907–911

    PubMed  CAS  Google Scholar 

  2. Weinshenker BG (1994) Natural history of multiple sclerosis. Ann Neurol 36: S6–S11

    PubMed  Google Scholar 

  3. Confavreux C, Aimard G, Devic M (1980) Course and prognosis of multiple sclerosis assessed by the computerized data processing of 349 patients. Brain 103: 281–300

    PubMed  CAS  Google Scholar 

  4. Kurtzke JF, Beebe GW, Nagler B, et al. (1977) Studies on the natural history of multiple sclerosis. 8. Early prognostic features of the later course of the illness. J Chronic Dis 30: 819–830

    PubMed  CAS  Google Scholar 

  5. Rudick P, Antel J, Confavreux C, et al. (1996) Clinical outcomes assessment in multiple sclerosis. Ann Neurol 40: 469–479

    PubMed  CAS  Google Scholar 

  6. Sharrack B, Hughes RAC (1996) Clinical scales for multiple sclerosis. J Neurol Sci 135: 1–9

    PubMed  CAS  Google Scholar 

  7. Rao SM, Leo GJ, Bernardin L, Unverzagt F (1991) Cognitive dysfunction in multiple sclerosis: Frequency, patterns and prediction. Neurology 41: 685–691

    PubMed  CAS  Google Scholar 

  8. Amato MP, Ponziani G, Pracucci G, et al. (1995) Cognitive impairment in early onset multiple sclerosis. Pattern, predictors, and impact on everyday life in a 4-year follow-up. Arch Neurol 52: 168–172

    PubMed  CAS  Google Scholar 

  9. Rao SM, Leo GJ, Haughton VM, et al. (1989) Correlation of magnetic resonance imaging with neuropsychological testing in multiple sclerosis. Neurology 39: 161–166

    PubMed  CAS  Google Scholar 

  10. Filippi M, Miller DH (1996) MRI in the differential diagnosis and monitoring the treatment of multiple sclerosis. Curr Opin Neurol 9: 178–186

    PubMed  CAS  Google Scholar 

  11. Filippi M, Horsfield MA, Tofts PS, et al. (1995) Quantitative assessment of MRI lesion load in monitoring the evolution of multiple sclerosis. Brain 118:1601–1612

    PubMed  Google Scholar 

  12. Gass A, Barker GJ, Kidd D, et al. (1994) Correlation of magnetization transfer ratio with disability in multiple sclerosis. Ann Neurol 36: 62–67

    PubMed  CAS  Google Scholar 

  13. De Stefano N, Matthews PM, Antel JP, et al. (1995) Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 38: 901–909

    PubMed  Google Scholar 

  14. Chiappa KH (1980) Pattern shift visual, brainstem auditory and short latency somatosensory evoked potentials in multiple sclerosis. Neurology 30:110–123

    PubMed  CAS  Google Scholar 

  15. Khosbin S, Hallet M (1981) Multimodality evoked potentials and blink reflex in multiple sclerosis. Neurology 31:138–144

    Google Scholar 

  16. Trojaborg W, Petersen E (1979) Visual and somatosensory evoked potentials in multiple sclerosis. J Neurol Neurosurg Psychiatry 42: 323–330

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Comi G, Martinelli V, Medaglini S, et al. (1989) Correlation bertween multimodal evoked potentials and magnetic resonance imaging in multiple sclerosis. J Neurol 236: 4–8

    PubMed  CAS  Google Scholar 

  18. Kurtzke JF (1983) Rating neurological impairment in multiple sclerosis: An expanded disability status scale (EDSS) Neurology 33:1444–1452

    PubMed  CAS  Google Scholar 

  19. The IFNB Multiple Sclerosis Study Group, the University of British Columbia MS/MRI

    Google Scholar 

  20. Noseworthy JH, Vandervoort MK, Wong CJ, et al. (1990) Interrater variability with the Expanded Disability Status Scale (EDSS) and Functional Systems (FS) in a multiple sclerosis clinical trial. Neurology 40: 971–975

    PubMed  CAS  Google Scholar 

  21. Sipe JC, Knobler RL, Broheny SL, et al. (1984) A neurological rating scale (NRS) for use in multiple sclerosis. Neurology 34: 1368–1372

    PubMed  CAS  Google Scholar 

  22. Goodkin DE, Hertsgaard D, Seminary J (1988) Upper extremity function in multiple sclerosis: Improving assessment sensitivity with box-and-block and nine-hole peg tests. Arch Phys Med Rehab 69: 850–854

    CAS  Google Scholar 

  23. Coste J, Fermanian J, Venot A (1995) Methodological and statistical problems in the construction of composite measurement scales: A survey of six medical and epidemiological journals. Stat Med 14: 331–345

    PubMed  CAS  Google Scholar 

  24. Surridge D, et al. (1969) An investigation of some psychiatric aspects of multiple sclerosis. Br J Psychiatry 155: 749–764

    Google Scholar 

  25. Peyser JM, Edwards KR, Poser CM, Filskov SB (1980) Cognitive fuction in patients with multiple sclerosis. Arch Neurol 37: 577–579

    PubMed  CAS  Google Scholar 

  26. Bertrando P, Maffei C, Ghezzi A (1983) A study of neuropsychological alterations in multiple sclerosis. Acta Psychiatr Belg 83: 13–21

    PubMed  CAS  Google Scholar 

  27. De Smedt L, Swerts M, Geutjens J, Medaer R (1984) Intellectual impairment in multiple sclerosis. In: Gonsette RF, Delmotte P (eds) Immunological and clinical aspects of multiple sclerosis. MTP Press, Lancaster, pp 342–345

    Google Scholar 

  28. Heaton RH, Nelson LM, Thompson DS, et al. (1985) Neuropsychological findings in relapsing remitting and chronic progressive multiple sclerosis. J Consult Clin Psychol 53:103–110

    PubMed  CAS  Google Scholar 

  29. Lyon-Caen O, Jouvent R, Hauser S, et al. (1986) Cognitive function in recent-onset demyelinating diseases. Arch Neurol 43:1138–1141

    PubMed  CAS  Google Scholar 

  30. Comi G, Filippi M, Martinelli V, et al. (1995) Brain MRI correlates of cognitive impairment in primary and secondary progressive multiple sclerosis. J Neurol Sci 132: 222–227

    PubMed  CAS  Google Scholar 

  31. Rovaris M, Filippi M, Falautano M, et al. (1998) Relation between MR abnormalities and patterns of cognitive impairment in multiple sclerosis. Neurology 50:1601–1608

    PubMed  CAS  Google Scholar 

  32. Rao SM (1986) Neuropsychology of multiple sclerosis: A critical review. ] Clin Exp Neuropsychol 5: 503–542

    Google Scholar 

  33. Heaton RH, Nelson LM, Thompson DS, et al. (1985) Neuropsychological findings in relapsing remitting and chronic progressive multiple sclerosis. J Consult Clin Psychol 53:103–110

    PubMed  CAS  Google Scholar 

  34. Lyon-Caen O, Jouvent R, Hauser S, et al. (1986) Cognitive function in recent-onset demyelinating diseases. Arch Neurol 43:1138–1141

    PubMed  CAS  Google Scholar 

  35. Comi G, Filippi M, Martinelli V, et al. (1995) Brain MRI correlates of cognitive impairment in primary and secondary progressive multiple sclerosis. J Neurol Sci 132: 222–227

    PubMed  CAS  Google Scholar 

  36. Rovaris M, Filippi M, Falautano M, et al. (1998) Relation between MR abnormalities and patterns of cognitive impairment in multiple sclerosis. Neurology 50:1601–1608

    PubMed  CAS  Google Scholar 

  37. Rao SM (1986) Neuropsychology of multiple sclerosis: A critical review. J Clin Exp Neuropsychol 5: 503–542

    Google Scholar 

  38. Comi G, Filippi M, Martinelli V, et al. (1993) Brain magnetic resonance imaging correlates of cognitive impairment in mutiple sclerosis. J Neurol Sci 115: S66–S73.

    PubMed  Google Scholar 

  39. Rao SM (1990) Multiple sclerosis. In: Cummings JL (ed) Subcortical dementia. Oxford University Press, New York, pp 164–180

    Google Scholar 

  40. Mahler ME, Benson DF (1990) Cognitive dysfunction in multiple sclerosis: A subcortical dementia? In: Rao SM (ed) Neurobehavioral aspects of multiple sclerosis. Oxford University Press, New York, pp 88–101

    Google Scholar 

  41. Kujala P, Portin R, Ruutiainen J (1997) The progress of cognitive decline in multiple sclerosis. A controlled 3 year follow-up. Brain 120: 289–297

    PubMed  Google Scholar 

  42. Staples D, Lincoln NB (1979) Intellectual impairment in multiple sclerosis and its relation to functional abilities. Rheumatol Rehab 18:153–160

    CAS  Google Scholar 

  43. Callanan MM, Logsdail SJ, Ron MA, Warrington EK (1989) Cognitive impairment in patients with clinically isolated lesions of the type seen in multiple sclerosis. Brain 112:361–374

    PubMed  Google Scholar 

  44. Swirsky-Sacchetti T, Mitchell DR, Seward J, et al. (1992) Neuropsychological and structural brain lesions in multiple sclerosis: A regional analysis. Neurology 42: 1291–1295

    PubMed  CAS  Google Scholar 

  45. Arnett PA, Rao SM, Bernardin L, et al. (1994). Relationship between frontal lobe lesions and Wisconsin card sorting test performance in patients with multiple sclerosis. Neurology 44: 420–425

    PubMed  CAS  Google Scholar 

  46. Foong J, Rozewicz L, Quaghebeur G, et al. (1997) Executive functions in multiple sclerosis. The role of frontal lobe pathology. Brain 120:15–26

    PubMed  Google Scholar 

  47. Wisnieski HM, Oppenheimer D, McDonald WI (1976) Relation between myelination and function. J Neuropathol Exp Neurol 35: 327 (abstract)

    Google Scholar 

  48. Ghatack NR, Hirano A, Lijtmaer H, et al. (1974) Asymptomatic demyelination plaque in the spinal cord. Arch Neurol 30: 484–486

    Google Scholar 

  49. McDonald WI, Sears TA (1970) The effects of experimental demyelination on conduction in the central nervous system. Brain 93: 583–598

    PubMed  CAS  Google Scholar 

  50. Thorpe W, Barker GJ, Jones SJ, et al. (1995) Magnetization transfer ratios and tranverse magnetization decay curves in optic neuritis: Correlation with clinical findings and electrophysiology. J Neurol Neurosurg Psychiatry 59: 487–492

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Onofrj M, Bazzano S, Malatesta G, et al. (1990) Pathophysiology of delayed evoked potentials in multiple sclerosis. Funct Neurol 5: 301–319

    PubMed  CAS  Google Scholar 

  52. Ulrich J, Groebke-Lorenz W (1983) The optic nerve in multiple sclerosis. A morphological study with retrospective clinico-pathological correlations. Neuroophthalmology 3:149–159

    Google Scholar 

  53. Quigly HA, Addicks EM (1982) Quantitative studies of retinal nerve fiber layer bundles and bundle defect. Arch Ophthalmol 100: 807–814

    Google Scholar 

  54. Celesia GG (1992) Visual evoked potentials in clinical neurology. In: Aminoff M (ed) Electrodiagnosis in clinical neurology. Churchill-Livingstone, New York, pp 467–489

    Google Scholar 

  55. Ingram DA, Thompson AJ, Swash M (1988) Central motor conduction in multiple sclerosis: Evaluation of abnormalities revealed by transcutaneous magnetic stimulation of the brain. J Neurol Neurosurg Psychiatry 51: 487–494

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Hess CW, Mills KR, Murray NMF, et al. (1987) Magnetic brain stimulation: Central motor conduction studies in multiple sclerosis. Ann Neurol 22: 744–752

    PubMed  CAS  Google Scholar 

  57. Comi G, Filippi M, Martinelli V, et al. (1993) Brainstem magnetic resonance imaging and evoked potentials studies of symptomatic multiple sclerosis patients. Eur Neurol 33: 232–237

    PubMed  CAS  Google Scholar 

  58. Sanders EACM, Arts RJHM (1986) Paresthesias in multiple sclerosis. J Neurol Sci 74: 297–305

    PubMed  CAS  Google Scholar 

  59. Yokota T, Hisose K, Tsukagoshi H, Tanabe H (1991) Somatosensory evoked potentials in patients with selective impairment of position sense versus vibration sense. Acta Neurol Scand 84: 201–206

    PubMed  CAS  Google Scholar 

  60. Laidlaw RW, Hamilton MA, Bricker R (1938) The occurrence of dissociated disturbance of pallesthesia and kinesthesia. Bull Neurol Inst NY 7: 303–320

    Google Scholar 

  61. Van der Kamp W, Maertens de Noorthout A, Thompson PD, et al. (1991) Correlation of phasic muscle strength and corticomotoneuronal conduction time in multiple sclerosis. Ann Neurol 29: 6–12

    PubMed  Google Scholar 

  62. Berardelli A, Inghilleri M, Cruccu G, et al. (1988) Stimulation of motor tracts in multiple sclerosis. J Neurol Neurosurg Psychiatry 51: 677–683

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Miller DH, McDonald WI, Blumhardt LD, et al. (1987) MRI of brain and spinal cord in isolated non-compressive spinal cord syndromes. Ann Neurol 22: 714–723

    PubMed  CAS  Google Scholar 

  64. Youl BD, Turano G, Miller DH, et al. (1991) The pathophysiology of acute optic neuritis. An association of gadolinium leakage with clinical and neurophysiological deficits. Brain 114: 2437–2450

    PubMed  Google Scholar 

  65. Filippi M, Campi A, Mammi S, et al. (1995) Brain magnetic resonance imaging and multimodal evoked potentials in benign and secondary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 58: 31–37

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Martinelli V, Comi G (1995) I1 valore prognostico dei potenziali evocati nella sclerosi multipla. In: Comi G (ed) I potenziali evocati nella sclerosi multipla. Springer, Berlin Heidelberg New York, pp 105–116

    Google Scholar 

  67. Shaw NA, Synek VM (1987) Intersession stability of somatosensory evoked potentials. Electroenceph Clin Neurophysiol 66: 281–285

    PubMed  CAS  Google Scholar 

  68. Andersson T, Persson A (1990) Reproducibility of somatosensory evoked potentials (SEPs) after median nerve stimulation. Electromyogr Clin Neurophysiol 30: 205–211

    Google Scholar 

  69. Aminoff MJ, Davis SL, Panitch HS (1984) Serial evoked potentials studies in patients with definite multiple sclerosis. Arch Neurol 41:1197–1202

    PubMed  CAS  Google Scholar 

  70. Anderson DC, Slater GE, Sherman R, et al. (1987) Evoked potentials to test a treatment of chronic multiple sclerosis. Arch Neurol 44:1232–1236

    PubMed  CAS  Google Scholar 

  71. Sorensen PS, Wanscher B, Szpirt W, et al. (1996) Plasma exchange combined with azathioprine in multiple sclerosis using serial gadolinium-enhanced MRI to monitor disease activity: A randomized single-masked cross-over pilot study. Neurology 46:1620–1625

    PubMed  CAS  Google Scholar 

  72. Bednarik J, Kadanka Z (1992) Multimodal sensory and motor evoked potentials in a two years follow-up study of MS patients with relapsing course. Acta Neurol Scand 86: 15–18

    PubMed  CAS  Google Scholar 

  73. Iragui VJ, Wiederholt WC, Romine JS (1986) Serial recording of multimodality evoked potentials in multiple sclerosis: A four years follow-up study. Can J Neurol Sci 13: 320–326

    PubMed  CAS  Google Scholar 

  74. Matthews VB, Small DG (1979) Serial recording of visual and somatosensory evoked potentials in multiple sclerosis. J Neurol Sci 40:11–21

    PubMed  CAS  Google Scholar 

  75. Davis SL, Aminoff MJ, Panitch HS (1985) Clinical correlations of serial somatosensory evoked potentials in multiple sclerosis. Neurology 35: 359–365

    PubMed  CAS  Google Scholar 

  76. Walsh JC, Garrick R, Cameron J, et al. (1982) Evoked potentials changes in clinically definite multiple sclerosis: A two years follow up study. J Neurol Neurosurg Psychiatry 45: 494–500

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Ghezzi A, Zaffaroni M, Caputo D, et al. (1986) Evaluation of evoked potentials and lymphocyte subsets as possible markers of multiple sclerosis: One year follow-up of 30 patients. J Neurol Neurosurg Psychiatry 49: 913–919

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Nuwer MR, Packwood JW, Myers LW, et al. (1987) Evoked potentials predict the clinical changes in a multiple sclerosis drug study. Neurology 37:1754–1761

    PubMed  CAS  Google Scholar 

  79. Andersen T, Siden A (1991) Multimodality evoked potentials and neurological phenomenology in patients with multiple sclerosis and potentially related conditions. Electromyogr Clin Neurophysiol 31:109–117

    Google Scholar 

  80. Smith T, Zeeberg I, Sjo O (1986) Evoked potentials in multiple sclerosis before and after high dose methylprednisolone infusion. Eur Neurol 25: 67–73

    PubMed  CAS  Google Scholar 

  81. Weiner HL, Dawson DM (1980) Plasmapheresis in multiple sclerosis: Preliminary study. Neurology 30:1029–1033

    PubMed  CAS  Google Scholar 

  82. Compston DAS, Milligan NM, Hughes PJ, et al. (1987) A double-blind controlled trial of high dose methylprednisolone in patients with multiple sclerosis: Laboratory results. J Neurol Neurosurg Psychiatry 50: 517–522

    PubMed  CAS  PubMed Central  Google Scholar 

  83. DeWeerd AW (1987) Variability of the central conduction in the course of multiple sclerosis: Serial recording of evoked potentials in the evaluation of therapy. Clin Neurol Neurosurg 89: 9–15

    CAS  Google Scholar 

  84. Salle JY, Hugon J, Tabaraud F, et al. (1992) Improvement of motor evoked potentials and clinical course post-steroid therapy in multiple sclerosis. J Neurol Sci 108:184–188

    PubMed  CAS  Google Scholar 

  85. La Mantia L, Riti F, Milanese C, et al. (1994) Serial evoked potentials in multiple sclebouts. Relation to steroid treatment. Ital J Neurol Sci 15: 333–340

    PubMed  Google Scholar 

  86. Calopa M, Bas J, Mestre M, et al. (1995) T cell subsets in multiple sclerosis: A serial study. Acta Neurol Scand 92: 361–368

    PubMed  CAS  Google Scholar 

  87. Bongioanni P, Fioretti C, Vanacore R, et al. (1996) Lymphocyte subsets in multiple sclerosis. A study with two-colour fluorescence analysis. J Neurol Sci 139: 71–77

    PubMed  CAS  Google Scholar 

  88. Stuber A, Martin R, Stone LA, et al. (1996) Expression pattern of activation and adhesion molecules on peripheral blood CD4+ T-lymphocytes in relapsing-remitting multiple sclerosis patients: A serial analysis. J Neuroimmunol 66: 147–151

    PubMed  CAS  Google Scholar 

  89. Martino G, Filippi M, Martinelli V, et al. (1996) Clinical and radiological correlates of a novel T-lymphocyteγ-interferon-activated Ca2+ influx in patients with relapsing-remitting multiple sclerosis. Neurology 46:1416–1421

    PubMed  CAS  Google Scholar 

  90. Hartung HP, Reiners K, Archelos JJ, et al. (1995) Circulating adhesion molecules and tumor necrosis factor receptor in multiple sclerosis: Correlation with magnetic resonance imaging. Ann Neurol 38: 186–193

    PubMed  CAS  Google Scholar 

  91. Rieckmann P, Altenhofen B, Riegel A, et al. (1997) Soluble adhesion molecules (sVCAM-I and sICAM-I) in cerebrospinal fluid and serum correlate with MRI activity in multiple sclerosis. Ann Neurol 41: 326–333

    PubMed  CAS  Google Scholar 

  92. Mossner R, Fassbender K, Kuhnen J, et al. (1996) Circulating L-selectin in multiple sclerosis patients with active, gadolinium-enhancing brain plaques. J Neuroimmunol 65: 61–65

    PubMed  CAS  Google Scholar 

  93. Nicoletti F, Patti F, Di Marco R, et al. (1996) Circulating serum levels of IL-lra in patients with relapsing-remitting multiple sclerosis are normal during remission phases but significantly increased either during exacerbations or in response to IFN-ß treatment. Cytokine 8: 395–400

    PubMed  CAS  Google Scholar 

  94. Zoukos Y, Kidd D, Woodrofe MN, et al. (1994) Increased expression of high affinity IL-2 receptors and ß-adrenoreceptors on peripheral blood mononuclear cells is associated with clinical and MRI activity in multiple sclerosis. Brain 117: 307–315

    PubMed  Google Scholar 

  95. Matusevicius D, Navikas V, Soderstrom M, et al. (1996). Multiple sclerosis: The proinflammatory cytokines lymphotoxin-α and tumor necrosis factor-α are upregulated in cerbrospinal fluid mononuclear cells. J Neuroimmunol 66:15–23

    Google Scholar 

  96. Rieckmann P, Albrecht M, Kitze B, et al. (1995) Tumor necrosis factor-α messenger RNA expression in patients with relapsing-remitting multiple sclerosis is associated with disease acitivity. Ann Neurol 37: 82–88

    PubMed  CAS  Google Scholar 

  97. Spuler S, Yousry T, Scheller A, et al. (1996). Multiple sclerosis: Prospective analysis of TNF-α and 55 kDa TNF receptor in CSF and serum in correlation with clinical and MRI activity. J Neuroimmunol 66: 57–64

    PubMed  CAS  Google Scholar 

  98. Rovaris M, Barnes D, Woodrofe N, et al. (1996) Patterns of disease activity in multiple sclerosis patients: A study with quantitative gadolinium-enhanced brain MRI and cytokine measurement in different clinical subgroups. J Neurol 243: 536–542

    PubMed  CAS  Google Scholar 

  99. Mokhtarian F, Shi Y, Shirazian D, et al. (1994) Defective production of anti-inflammatory cytokine TGF-ß by T cell lines of patients with active multiple sclerosis. J Immunol 152: 6003–6010

    PubMed  CAS  Google Scholar 

  100. Rollnik JD, Sindern E, Schweppe C, Malin JP (1997) Biologically active TGF-ß1 is increased in cerebrospinal fluid while it is reduced in serum in multiple sclerosis patients. Acta Neurol Scand 96:101–105

    PubMed  CAS  Google Scholar 

  101. Giovannoni G, Lai M, Kidd D, et al. (1997) Daily urinary neopterin excretion as an immunological marker of disease activity in multiple sclerosis. Brain 120:1–13

    PubMed  Google Scholar 

  102. Nicoletti F, Patti F, Cocuzza C, et al. (1996) Elevated serum levels of interleukin-12 in chronic progressive multiple sclerosis. J Neuroimmunol 70: 87–90

    PubMed  CAS  Google Scholar 

  103. Trotter JL, Clifford DB, Mclnnis JE, et al. (1989) Correlation of immunological studies and disease progression in chronic progressive multiple sclerosis. Ann Neurol 25:172–178

    PubMed  CAS  Google Scholar 

  104. Sharief MK, Hentges R (1991) Association between tumor necrosis factor-αand disease progression in patients with multiple sclerosis. New Engl J Med 325: 467–472

    PubMed  CAS  Google Scholar 

  105. Whitaker JN, Kachelhofer RD, Bradley EL, et al. (1995) Urinary myelin basic proteinlike material as a correlate of the progression of multiple sclerosis. Ann Neurol 38: 625–632

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia

About this paper

Cite this paper

Comi, G., Rovaris, M. (1999). Clinical and Paraclinical Outcomes for Treatment Trials in Multiple Sclerosis. In: Filippi, M., Grossman, R.I., Comi, G. (eds) Magnetic Resonance Techniques in Clinical Trials in Multiple Sclerosis. Topics in Neuroscience. Springer, Milano. https://doi.org/10.1007/978-88-470-2153-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2153-2_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2180-8

  • Online ISBN: 978-88-470-2153-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics