Skip to main content

The role of proinflammatory cytokines in multiple sclerosis

  • Conference paper
Advances in the Immunopathogenesis of Multiple Sclerosis

Abstract

The pathological hallmark of multiple sclerosis (MS) is the presence, within the central nervous system (CNS), of patchy inflammatory infiltrates leading to demyelination and axonal loss, and containing autoreactive T cells and pathogenic non-antigen-specific mononuclear cells [1]. It is currently believed that CNS antigen-reactive T cells provide the organ specificity of the pathogenic process. These cells regulate the recirculation within the CNS of non-antigen-specific lymphocytes and monocytes which act as effector cells by releasing myelinotoxic substances [2]. T cells specific for myelin and non-myelin components and mainly displaying the α/β T cell receptor (TCR) constitute the majority of the CNS-antigen specifc T cell population, while blood-borne activated macrophages, B cells producing antibodies against myelin components (i.e. myelin oligodendrocyte glycoprotein) or still unidentified components (i.e. oligoclonal cerebrospinal fluid bands), and γ/δ T cells represent the effector cell population. Nevertheless, the two different cell populations display overlapping functions; a minor proportion of α/β T cells specific for myelin antigens shows cytotoxic properties while γ/δ T cells can contribute to effector cell recruitment (mainly macrophages) via proinflammatory cytokine and chemokine production. To further complicate the T cell-mediated pathogenic scenario in MS, it has been recently reported that both regulatory as well as effector cells can be cross-regulated by different subsets of T cells including anti-T cell receptor (TCR) T cells as well as T cells carrying a natural killer receptor (NKR) [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martin R, McFarland HF, McFarlin DE (1992) Immunological aspects of demyelinating diseases. Annu Rev Immunol 10: 153–187

    Article  PubMed  CAS  Google Scholar 

  2. Steinman L (1996) A few autoreactive cells in an autoimmune infiltrate control a vast population of nonspecific cells: a tale of smart bombs and the infantry. Proc Natl Acad Sci USA 93: 2253–2256

    Article  PubMed  CAS  Google Scholar 

  3. Martino G, Hartung HP (1999) Immunopathogenesis of MS: the role of T cells. Curr Opin Neurol (in press).

    Google Scholar 

  4. Martino G, Furlan R, Poliani PL (1999) Inflammation in multiple sclerosis: a close interplay. In: Martino G, Adorini L (eds) Martino G, Furlan R, Poliani PL, pp 185–194 ( Topics in neuroscience)

    Google Scholar 

  5. Goverman J, Woods A, Larson L, Weiner LP, Hood L, Zaller DM (1993) Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72: 551–560

    Article  PubMed  CAS  Google Scholar 

  6. Lafaille JJ, Nagashima K, Katsuki M, Tonegawa S (1994) High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell 78: 399–408

    Article  PubMed  CAS  Google Scholar 

  7. Selmaj KW, CS Raine (1988) Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol 23: 339–346

    Article  PubMed  CAS  Google Scholar 

  8. Esiri MM, Gay D (1997) The immunocytochemistry of multiple sclerosis plaques. In: Raine CS, McFarland HF, Tourtellotte WW (eds) Multiple sclerosis. Clinical and pathogenetic basis. Chapman 0026 Hall, London, pp 173186

    Google Scholar 

  9. Karpus WJ, Ransohoff RM (1998) Chemokine regulation of experimental autoimmune encephalomyelitis: temporal and spatial expression patterns govern disease pathogenesis. J Immunol 161: 2667–2671

    PubMed  CAS  Google Scholar 

  10. Battistini L, Borsellino G, Sawicki G, Poccia F, Salvetti M, Ristori G, Brosnan CF (1997) Phenotypic and cytokine analysis of human peripheral blood gamma delta T cells expressing NK cell receptors. J Immunol 159: 37233730

    Google Scholar 

  11. Newcombe J, Li H, Cuzner ML (1994) Low density lipoprotein uptake by macrophages in multiple sclerosis plaques: implications for pathogenesis. Neuropathol Appl Neurobiol 20: 152–162

    Article  PubMed  CAS  Google Scholar 

  12. Huterer SJ, Tourtellotte WW, Wherrett JR (1995) Alterations in the activity of phospholipases A2 in postmortem white matter from patients with multiple sclerosis. Neurochem Res 20: 1335–1343

    Article  PubMed  CAS  Google Scholar 

  13. Narayana PA, Doyle TJ, Lai D, Wolinsky JS (1998) Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol 43: 56–71

    Article  PubMed  CAS  Google Scholar 

  14. Lucchinetti CF, Bruck W, Rodriguez M, Lassmann H (1996) Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol 6: 259–274

    Article  PubMed  CAS  Google Scholar 

  15. Cuzner ML, Gveric D, Strand C, Loughlin AJ, Paemen L, Opdenakker G, Newcombe J (1996) The expression of tissue-type plasminogen activator, matrix metalloproteases and endogenous inhibitors in the central nervous system in multiple sclerosis: comparison of stages in lesion evolution. J Neuropathol Exp Neurol 55: 1194–1204

    Article  PubMed  CAS  Google Scholar 

  16. Li H, Cuzner ML, Newcombe J (1996) Microglia-derived macrophages in early multiple sclerosis plaques. Neuropathol Appl Neurobiol 22: 207–215

    Article  PubMed  CAS  Google Scholar 

  17. Selmaj KW, Raine CS, Cannella B, Brosnan CF (1991) Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest 87: 949–954

    Article  PubMed  CAS  Google Scholar 

  18. Filippi M, Rocca MA, Martino G, Horshfield MA, Comi G (1998) Magnetization transfer changes in the normal-appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43: 809–814

    Article  PubMed  CAS  Google Scholar 

  19. Soderstrom M, Link H, Sun JB, Fredrikson S, Wang ZY, Huang WX (1994) Autoimmune T cell repertoire in optic neuritis and multiple sclerosis: T cells recognising multiple myelin proteins are accumulated in cerebrospinal fluid. J Neurol Neurosurg Psychiatry 57: 544–551

    Google Scholar 

  20. Chou YK, Vainiene M, Whitham R, Bourdette D, Chou CH, Hashim G, Offner H, Vandenbark AA (1989) Response of human T lymphocyte lines to myelin basic protein: association of dominant epitopes with HLA class II restriction molecules. J Neurosci Res 23: 207–216

    Article  PubMed  CAS  Google Scholar 

  21. Trotter JL, Hickey WF, van der Veen RC, Sulze L (1991) Peripheral blood mononuclear cells from multiple sclerosis patients recognize myelin proteolipid protein and selected peptides. J Neuroimmunol 33: 55–62

    Article  PubMed  CAS  Google Scholar 

  22. Sun J, Link H, Olsson T, Xiao BG, Andersson G, Ekre HP, Linington C, Diener P (1991) T and B cell responses to myelin-oligodendrocyte glycoprotein in multiple sclerosis. J Immunol 146: 1490–1495

    PubMed  CAS  Google Scholar 

  23. Olsson T, Zhi WW, Hojeberg B, Kostulas V, Jiang YP, Anderson G, Ekre HP, Link H (1990) Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-gamma. J Clin Invest 86: 981–985

    Article  PubMed  CAS  Google Scholar 

  24. Link H, Sun JB, Wang Z, Xu Z, Love A, Fredrikson S, Olsson T (1992) Virus-reactive and autoreactive T cells are accumulated in cerebrospinal fluid in multiple sclerosis. J Neuroimmunol 38: 63–73

    Article  PubMed  CAS  Google Scholar 

  25. Sun JB, Olsson T, Wang WZ, Xiao BG, Kostulas V, Fredrikson S, Ekre HP, Link H (1991) Autoreactive T and B cells responding to myelin proteolipid protein in multiple sclerosis and controls. Eur J Immunol 21: 1461–1468

    Article  PubMed  CAS  Google Scholar 

  26. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffmann RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136: 2348–2357

    Google Scholar 

  27. Del Prete G, De Carli M, Mastromauro C, Biagiotti R, Macchia D, Falagiani P, Ricci M, Romagnani S (1991) Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profile of cytokine production. J Clin Invest 88: 346–350

    Article  PubMed  Google Scholar 

  28. Erard F, Wild M-T, Garcia-Sanz JA, Le Gros G (1993) Switch of CD8 T cells to noncytolytic CD8–CD4- cells that make TH2 cytokines and help B cells. Science 260: 1802–1805

    Article  PubMed  CAS  Google Scholar 

  29. Romagnani S (1991) Human TH1 and TH2 subsets: doubt no more. Immunol Today 12: 256–257

    Article  PubMed  CAS  Google Scholar 

  30. Baron JL, Madri JA, Ruddle NH, Hashim G, Janeway CA Jr (1993) Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. J Exp Med 177: 57–68

    Article  PubMed  CAS  Google Scholar 

  31. Haskins K, McDuffie M (1990) Acceleration of diabetes in young NOD mice with a CD4+ islet-specific T cell clone. Science 249: 1433–1436

    Article  PubMed  CAS  Google Scholar 

  32. Nakajima H, Takamori H, Hiyama Y, Tsukada W (1990) The effect of treatment with interferon-gamma on type II collagen-induced arthritis. Clin Exp Immunol 81: 441–445

    Article  PubMed  CAS  Google Scholar 

  33. Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383: 787–793

    Article  PubMed  CAS  Google Scholar 

  34. Hemmer B, Vergelli M, Tranquill L, Conlon P, Ling N, McFarland HF, Martin R (1997) Human T cell response to myelin basic protein peptide (83–99): extensive heterogeneity in antigen recognition, function and phenotype. Neurology 49: 1116–1126

    PubMed  CAS  Google Scholar 

  35. Voskuhl RR, Martin R, Bergman C, Dalal M, Ruddle NH, McFarland HF (1993) T helper 1 (TH1) functional phenotype of human myelin basic protein-specific T lymphocytes. Autoimmunity 15: 137–143

    Article  PubMed  CAS  Google Scholar 

  36. Hemmer B, Vergelli M, Calabresi P, Huang T, McFarland HF, Martin R (1996) Cytokine phenotype of human autoreactive T cell clones specific for the immunodominant myelin basic protein peptide (83–99). J Neurosci Res 45: 852–862

    Article  PubMed  CAS  Google Scholar 

  37. Hermans G, Stinissen P, Hauben L, Van den Berg-Loonen E, Raus J, Zhang J (1997) Cytokine profile of myelin basic protein-reactive T cells in multiple sclerosis and healthy individuals. Ann Neurol 42: 18–27

    CAS  Google Scholar 

  38. Correale J, Gilmore W, McMillan M, Li S, McCarthy K, Le T, Weiner LP (1995) Patterns of cytokine secretion by autoreactive proteolipid protein-specific T cell clones during the course of multiple sclerosis. J Immunol 154: 2959–2968

    PubMed  CAS  Google Scholar 

  39. Kozovska M, Zang YC, Aebischer I, Lnu S, Rivera VM, Crowe PD, Boehme SA, Zhang JZ (1998) T cell recognition motifs of an immunodominant peptide of myelin basic protein in patients with multiple sclerosis: structural requirements and clinical implications. Eur J Immunol 28: 1894–1901

    Article  PubMed  CAS  Google Scholar 

  40. Balashov KE, Smith DR, Khoury SJ, Hafler DA, Weiner HL (1997) Increased interleukin-12 production in progressive multiple sclerosis: induction by activated CD4+ T cells via CD40 ligand. Proc Natl Acad Sci USA 94: 599–603

    Article  PubMed  CAS  Google Scholar 

  41. Correale J, McMillan M, Li S, McCarthy K, Le T, Weiner LP (1997) Antigen presentation by autoreactive proteolipid protein peptide-specific T cell clones from chronic progressive multiple sclerosis patients: roles of co-stimulatory B7 molecules and IL-12. J Neuroimmunol 72: 27–43

    Article  PubMed  CAS  Google Scholar 

  42. Martino G, Consiglio A, Franciotta DM, Corti A, Filippi M,Vandenbroeck K, Sciacca FL, Comi G, Grimaldi LME (1997) Tumor necrosis factor a and its receptors (R1 and R2) in relapsing-remitting multiple sclerosis. J Neurol Sci 152: 51–61

    CAS  Google Scholar 

  43. Burns J, Rosenzweig A, Zweiman B, Lisak RP (1983) Isolation of myelin basic protein-reactive T cell lines from normal human blood. Cell Immunol 81: 435–440

    Article  PubMed  CAS  Google Scholar 

  44. Martino G, Grohovaz F, Brambilla E, Codazzi F, Consiglio A, Clementi E, Filippi M, Comi G, Grimaldi LME (1998) Proinflammatory cytokines regulate antigen-independent T cell activation by two separate calcium-signaling pathways in multiple sclerosis patients. Ann Neurol 43: 340–349

    Article  PubMed  CAS  Google Scholar 

  45. Meinl E, Hoch RM, Dornmair K, de Waal Malefyt R, Bontrop RE, Jonker M, Lassmann H, Hohlfeld R, Wekerle H, ‘t Hart BA (1997) Encephalitogenic potential of myelin basic protein-specific T cells isolated from normal rhesus macaques. Am J Pathol 150: 445–453

    CAS  Google Scholar 

  46. Panitch HS, Hirsch RL, Haley AS, Johnson KP (1987) Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet I: 893–895

    Google Scholar 

  47. Panitch HS, Hirsch RL, Schindler J, Johnson KP (1987) Treatment of MS with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37: 1097–1102

    PubMed  CAS  Google Scholar 

  48. Beck J, Rondot P, Catinot L, Falcoff E, Kirchner H, Wietzerbin J (1988) Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol Scand 78: 318–323

    Article  PubMed  CAS  Google Scholar 

  49. Unutmaz D, Pileri P, Abrignani S (1994) Antigen-independent activation of naive and memory resting T cells by a cytokine combination. J Exp Med 180: 1159–1164

    Article  PubMed  CAS  Google Scholar 

  50. Tough DF, Borrow P, Sprent J (1996) Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 272: 1947–1950

    Article  PubMed  CAS  Google Scholar 

  51. Martino G, Clementi E, Brambilla E, Moiola L, Comi G, Meldolesi J, Grimaldi LME (1994) y-Interferon activates a previously undescribed Cat+ influx in T lymphocytes from patients with multiple sclerosis. Proc Natl Acad Sci USA 91: 4825–4829

    Google Scholar 

  52. Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392: 933–936

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia, Milan

About this paper

Cite this paper

Furlan, R., Poliani, P.L., Bergami, A., Gironi, M., Desina, G., Martino, G. (1999). The role of proinflammatory cytokines in multiple sclerosis. In: Gambi, D., Muraro, P.A., Lugaresi, A., Ecari, U. (eds) Advances in the Immunopathogenesis of Multiple Sclerosis. Springer, Milano. https://doi.org/10.1007/978-88-470-2269-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2269-0_9

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0067-4

  • Online ISBN: 978-88-470-2269-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics