Skip to main content

History and Phylogeography of Leprosy

  • Chapter
  • First Online:
Leprosy

Abstract

Leprosy results from infection with Mycobacterium leprae, an unculturable pathogen with an exceptionally long generation time that has afflicted human populations for millenia. The history of leprosy has been documented by various civilizations and its global spread deduced from the anthropological record, although scientific proof for the latter is often lacking. Considerable insight into the biology, genetics, and evolution of the leprosy bacillus has been obtained from genomics. M. leprae has undergone extensive reductive evolution, losing DNA from its genome, half of which is now occupied by pseudogenes. Comparative genomics of four different strains from India, Brazil, Thailand, and the USA revealed remarkable conservation of the ~3.27-megabase genome (99.995% identity) yet uncovered 215 polymorphic sites, mainly single-nucleotide polymorphisms (SNP), and a handful of new pseudogenes. Mapping these polymorphisms in a large panel of strains defined 16 SNP subtypes that showed strong geographical associations and helped retrace the evolution of M. leprae and the dissemination of leprosy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Britton WJ, Lockwood DN (2004) Leprosy. Lancet 363(9416):1209–1219

    Article  PubMed  Google Scholar 

  2. Anon. Global leprosy situation (2010) Wkly Epidemiol Rec 85:337–348

    Google Scholar 

  3. Cavalli-Sforza LL, Feldman MW (2003) The application of molecular genetic approaches to the study of human evolution. Nat Genet 33(Suppl):266–275

    Google Scholar 

  4. Gomez-Valero L, Rocha EP, Latorre A, Silva FJ (2007) Reconstructing the ancestor of Mycobacterium leprae: the dynamics of gene loss and genome reduction. Genome Res 17(8):1178–1185

    Article  PubMed  CAS  Google Scholar 

  5. Hulse EV (1972) Leprosy and ancient Egypt. Lancet 2(7785):1024–1025

    Article  PubMed  CAS  Google Scholar 

  6. Dharmendra (1967) History of spread and decline of leprosy, 2nd edn. Ministry of Health, New Delhi

    Google Scholar 

  7. Skinsnes OK, Chang PH (1985) Understanding of leprosy in ancient China. Int J Lepr Other Mycobact Dis 53(2):289–307

    PubMed  CAS  Google Scholar 

  8. Browne SG (1985) The history of leprosy. In: Hastings RC (ed) Leprosy. Churchill Livingstone, Edinburgh, pp 1–14

    Google Scholar 

  9. Scollard DM, Skinsnes OK (1999) Oropharyngeal leprosy in art, history, and medicine. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 87(4):463–470

    Article  PubMed  CAS  Google Scholar 

  10. Dzierzykray-Rogalski T (1980) Paleopathology of the Ptolemaic inhabitants of the Dakhleh oasis (Egypt). J Hum Evol 9:71–74

    Article  Google Scholar 

  11. Robbins G, Tripathy VM, Misra VN et al (2009) Ancient skeletal evidence for leprosy in India (2000 B.C.). PLoS One 4(5):e5669

    Article  PubMed  Google Scholar 

  12. Ortner DJ (2003) Infectious diseases: tuberculosis and leprosy. In: Ortner DJ (ed) The identification of pathological conditions in human skeletal remains. Academic, London, pp 227–272

    Chapter  Google Scholar 

  13. Sansarricq H (1995) Histoire de la lèpre. In: Sansarricq H (ed) La lèpre. Ellipses, Paris, pp 22–32

    Google Scholar 

  14. Kirchheimer WF, Storrs EE (1971) Attempts to establish the armadillo (Dasypus novemcinctus Linn.) as a model for the study of leprosy. I. Report of lepromatoid leprosy in an experimentally infected armadillo. Int J Lepr Other Mycobact Dis 39(3):693–702

    PubMed  CAS  Google Scholar 

  15. Cole ST, Eiglmeier K, Parkhill J et al (2001) Massive gene decay in the leprosy bacillus. Nature 409:1007–1011

    Article  PubMed  CAS  Google Scholar 

  16. Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544

    Article  PubMed  CAS  Google Scholar 

  17. Stinear TP, Seemann T, Harrison PF et al (2008) Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res 18(5):729–741

    Article  PubMed  CAS  Google Scholar 

  18. Cole ST, Supply P, Honoré N (2001) Repetitive sequences in Mycobacterium leprae and their impact on genome plasticity. Lepr Rev 72:449–461

    PubMed  CAS  Google Scholar 

  19. Monot M, Honore N, Garnier T et al (2005) On the origin of leprosy. Science 308(5724):1040–1042

    Article  PubMed  CAS  Google Scholar 

  20. Monot M, Honore N, Garnier T et al (2009) Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat Genet 41(12):1282–1289

    Article  PubMed  CAS  Google Scholar 

  21. Achtman M (2008) Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol 62:53–70

    Article  PubMed  CAS  Google Scholar 

  22. Shepard CC, Congdon CC (1968) Increased growth of Mycobacterium leprae in thymectomized-irradiated mice after foot pad inoculation. Int J Lepr Other Mycobact Dis 36(2):224–227

    PubMed  CAS  Google Scholar 

  23. Honore N, Cole ST (1993) Molecular basis of rifampin resistance in Mycobacterium leprae. Antimicrob Agents Chemother 37(3):414–418

    PubMed  CAS  Google Scholar 

  24. Maeda S, Matsuoka M, Nakata N et al (2001) Multidrug resistant Mycobacterium leprae from patients with leprosy. Antimicrob Agents Chemother 45(12):3635–3639

    Article  PubMed  CAS  Google Scholar 

  25. Williams DL, Gillis TP (2004) Molecular detection of drug resistance in Mycobacterium leprae. Lepr Rev 75(2):118–130

    PubMed  Google Scholar 

  26. Allix-Beguec C, Fauville-Dufaux M, Supply P (2008) Three-year population-based evaluation of standardized mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 46(4):1398–1406

    Article  PubMed  Google Scholar 

  27. Allix-Beguec C, Harmsen D, Weniger T, Supply P, Niemann S (2008) Evaluation and strategy for use of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of Mycobacterium tuberculosis complex isolates. J Clin Microbiol 46(8):2692–2699

    Article  PubMed  CAS  Google Scholar 

  28. Mazars E, Lesjean S, Banuls AL et al (2001) High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci USA 98(4):1901–1906

    Article  PubMed  CAS  Google Scholar 

  29. Groathouse NA, Rivoire B, Kim H et al (2004) Multiple polymorphic loci for molecular typing of strains of Mycobacterium leprae. J Clin Microbiol 42(4):1666–1672

    Article  PubMed  CAS  Google Scholar 

  30. Matsuoka M, Maeda S, Kai M et al (2000) Mycobacterium leprae typing by genomic diversity and global distribution of genotypes. Int J Lepr Other Mycobact Dis 68(2):121–128

    PubMed  CAS  Google Scholar 

  31. Filliol I, Motiwala AS, Cavatore M et al (2006) Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J Bacteriol 188(2):759–772

    Article  PubMed  CAS  Google Scholar 

  32. Falush D, Wirth T, Linz B et al (2003) Traces of human migrations in Helicobacter pylori populations. Science 299(5612):1582–1585

    Article  PubMed  CAS  Google Scholar 

  33. Wirth T, Wang X, Linz B et al (2004) Distinguishing human ethnic groups by means of sequences from Helicobacter pylori: lessons from Ladakh. Proc Natl Acad Sci USA 101(14):4746–4751

    Article  PubMed  CAS  Google Scholar 

  34. Achtman M, Morelli G, Zhu P et al (2004) Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci USA 101(51):17837–17842

    Article  PubMed  CAS  Google Scholar 

  35. Wong SH, Gochhait S, Malhotra D et al (2010) Leprosy and the adaptation of human toll-like receptor 1. PLoS Pathog 6:e1000979

    Article  PubMed  Google Scholar 

  36. Cavalli-Sforza LL, Feldman MW (2003) The application of molecular genetic approaches to the study of human evolution. Nat Genet Supp 33:266–275

    Article  CAS  Google Scholar 

  37. Underhill PA, Shen P, Lin AA et al (2000) Y chromosome sequence variation and the history of human populations. Nat Genet 26:358–361

    Article  PubMed  CAS  Google Scholar 

  38. Taylor GM, Watson CL, Lockwood DNJ, Mays SA (2006) Variable nucleotide tandem repeat (VNTR) typing of two cases of lepromatous leprosy from the archaeological record. J Archaeol Sci 33:1569–1579

    Article  Google Scholar 

  39. Watson CL, Lockwood DN (2009) Single nucleotide polymorphism analysis of European archaeological Mycobacterium leprae DNA. PLoS One 4(10):e7547

    Article  PubMed  Google Scholar 

  40. Molto JE (2002) Leprosy in Roman period skeletons from Kellis 2, Dakhleh, Egypt. In: Roberts CA, Lewis ME, Manchester K (eds) The past and present of leprosy: archaeological, historical, palaeopathological and clinical approaches., BAR International Series, vol 1054. Archaeopress, Oxford, pp 179–192

    Google Scholar 

  41. Taylor GM, Blau S, Mays S et al (2009) Genotyping of Mycobacterium leprae amplified from an archaeological case of lepromatous leprosy from Central Asia. J Archaeol Sci 36:2408–2414

    Article  Google Scholar 

  42. Green RE, Krause J, Briggs AW et al (2010) A draft sequence of the Neandertal genome. Science 328(5979):710–722

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all the patients and participants who contributed to this work, particularly Philippe Busso, Nadine Honoré, and Marc Monot. Financial support was generously provided by the Foundation Raoul Follereau, and the National Institutes of Health, National Institute of Allergy and Infectious Diseases (grant RO1-AI47197-01A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stewart T. Cole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Cole, S.T., Singh, P. (2012). History and Phylogeography of Leprosy. In: Nunzi, E., Massone, C. (eds) Leprosy. Springer, Milano. https://doi.org/10.1007/978-88-470-2376-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2376-5_1

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2375-8

  • Online ISBN: 978-88-470-2376-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics