Skip to main content

The Baboon as a Primate Model To Study the Physiology and Metabolic Effects of Exercise

  • Chapter
Cellular Physiology and Metabolism of Physical Exercise

Abstract

Non-human primates are invaluable models for the study of human diseases due to their close genetic, anatomical, and physiological similarities with our own species. They are extensively used in biomedical research aimed at elucidating the molecular mechanisms of complex chronic diseases, including but not limited to osteoporosis, obesity, type 2 diabetes, and atherosclerosis [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carlsson HE, Schapiro SJ, Farah I, Hau J (2004) Use of primates in research: a global overview. Am J Primatol 63(4):225–37

    Article  PubMed  Google Scholar 

  2. Chavez AO, Lopez-Alvarenga JC, Tejero ME, Triplitt C, Bastarrachea RA, Sriwijitkamol A, et al (2008) Physiological and molecular determinants of insulin action in the baboon. Diabetes 57(4):899–908

    Article  PubMed  CAS  Google Scholar 

  3. Comuzzie AG, Cole SA, Martin L, Carey KD, Mahaney MC, Blangero J, et al (2003) The baboon as a nonhuman primate model for the study of the genetics of obesity. Obes Res 11(1):75–80

    Article  PubMed  Google Scholar 

  4. VandeBerg JL, Williams-Blangero S, Tardif SD (2009) The baboon in biomedical research. Springer, New York

    Book  Google Scholar 

  5. Garcia C, Rosetta L, Ancel A, Lee PC, Caloin M (2004) Kinetics of stable isotope and body composition in olive baboons (Papio anubis) estimated by deuterium dilution space: a pilot study. J Med Primatol 33(3):146–51

    Article  PubMed  CAS  Google Scholar 

  6. Chavez AO, Gastaldelli A, Guardado-Mendoza R, Lopez-Alvarenga JC, Leland MM, Tejero ME, et al (2009) Predictive models of insulin resistance derived from simple morphometric and biochemical indices related to obesity and the metabolic syndrome in baboons. Cardiovasc Diabetol 8:22

    Article  PubMed  Google Scholar 

  7. Rogers J, Hixson JE (1997) Baboons as an animal model for genetic studies of common human disease. Am J Hum Genet 61(3):489–93

    Article  PubMed  CAS  Google Scholar 

  8. Aufdemorte TB, Fox WC, Miller D, Buffum K, Holt GR, Carey KD. (1993) A non-human primate model for the study of osteoporosis and oral bone loss. Bone 14(3):581–6

    Article  PubMed  CAS  Google Scholar 

  9. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, et al. (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 10:325(5937):201–4

    Article  Google Scholar 

  10. Barnett A, Allsworth J, Jameson K, Mann R (2007) A review of the effects of antihyperglycaemic agents on body weight: the potential of incretin targeted therapies. Curr Med Res Opin 23(7):1493–507

    Article  PubMed  CAS  Google Scholar 

  11. Sriwijitkamol A, Coletta DK, Wajcberg E, Balbontin GB, Reyna SM, Barrientes J, et al (2007) Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose-response study. Diabetes 56(3):836–48

    Article  PubMed  CAS  Google Scholar 

  12. Hunnell NA, Rockcastle NJ, McCormick KN, Sinko LK, Sullivan EL, Cameron JL (2007) Physical activity of adult female rhesus monkeys (Macaca mulatta) across the menstrual cycle. Am J Physiol Endocrinol Metab 292(6):E1520–5

    Article  PubMed  CAS  Google Scholar 

  13. Papailiou A, Sullivan E, Cameron JL (2008) Behaviors in rhesus monkeys (Macaca mulatta) associated with activity counts measured by accelerometer. Am J Primatol 70(2):185–90

    Article  PubMed  Google Scholar 

  14. Cefalu WT (2006) Animal models of type 2 diabetes: clinical presentation and pathophysiological relevance to the human condition. ILAR J 47(3):186–98

    PubMed  CAS  Google Scholar 

  15. Wagner JE, Kavanagh K, Ward GM, Auerbach BJ, Harwood HJ, Jr., Kaplan JR (2006) Old world nonhuman primate models of type 2 diabetes mellitus. ILAR J 47(3):259–71

    PubMed  CAS  Google Scholar 

  16. Kaplan JR, Wagner JD (2006) Type 2 diabetes-an introduction to the development and use of animal models. ILAR J 47(3):181–5

    PubMed  CAS  Google Scholar 

  17. Kahn CR, Folli F ( 1993) Molecular determinants of insulin action. Horm Res 39 Suppl 3:93–101

    Article  PubMed  CAS  Google Scholar 

  18. Biddinger SB, Kahn CR (2006) From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol 68:123–58

    Article  PubMed  CAS  Google Scholar 

  19. Guardado-Mendoza R, Davalli AM, Chavez AO, Hubbard GB, Dick EJ, Majluf-Cruz A, et al (2009) Pancreatic islet amyloidosis, beta-cell apoptosis, and alpha-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons. Proc Natl Acad Sci USA 18;106(33):13992–7

    Article  PubMed  CAS  Google Scholar 

  20. Guardado-Mendoza R, Dick EJ, Jr., Jimenez-Ceja LM, Davalli A, Chavez AO, Folli F, et al (2009) Spontaneous pathology of the baboon endocrine system. J Med Primatol 38(6):383–9

    Article  PubMed  CAS  Google Scholar 

  21. Hubbard GB, Steele KE, Davis KJ, 3rd, Leland MM (2002) Spontaneous pancreatic islet amyloidosis in 40 baboons. J Med Primatol 31(2):84–90

    Article  PubMed  CAS  Google Scholar 

  22. Cole SA, Martin LJ, Peebles KW, Leland MM, Rice K, VandeBerg JL, et al (2003) Genetics of leptin expression in baboons. Int J Obes Relat Metab Disord 27(7):778–83

    Article  PubMed  CAS  Google Scholar 

  23. Hull RL, Westermark GT, Westermark P, Kahn SE (2004) Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab 89(8):3629–43

    Article  PubMed  CAS  Google Scholar 

  24. Ortmeyer HK, Sajan MP, Miura A, Kanoh Y, Rivas J, Li Y, et al (2011) Insulin signaling and insulin sensitizing in muscle and liver of obese monkeys: PPARgamma agonist improves defective activation of atypical protein kinase C. Antioxid Redox Signal 14(2):207–19

    Article  PubMed  CAS  Google Scholar 

  25. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK (2009) American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 41(2):459–71

    Article  PubMed  Google Scholar 

  26. American Diabetes Association (2009) Standards of medical care in diabetes 2009. Diabetes Care 32 Suppl 1:S13–61

    Article  Google Scholar 

  27. Mann TM, Williams KE, Pearce PC, Scott EA.(2005) A novel method for activity monitoring in small non-human primates. Lab Anim 39(2):169–77

    Article  PubMed  CAS  Google Scholar 

  28. Sullivan EL, Koegler FH, Cameron JL (2006) Individual differences in physical activity are closely associated with changes in body weight in adult female rhesus monkeys (Macaca mulatta). Am J Physiol Regul Integr Comp Physiol 291(3):R633–42

    Article  PubMed  CAS  Google Scholar 

  29. Talan MI, Engel BT (1986) Learned control of heart rate during dynamic exercise in nonhuman primates. J Appl Physiol 61(2):545–53

    PubMed  CAS  Google Scholar 

  30. Hohimer AR, Hales JR, Rowell LB, Smith OA (1983) Regional distribution of blood flow during mild dynamic leg exercise in the baboon. J Appl Physiol 55(4):1173–7

    PubMed  CAS  Google Scholar 

  31. Hohimer AR, Smith OA (1979) Decreased renal blood flow in the baboon during mild dynamic leg exercise. Am J Physiol 236(1):H141–50

    PubMed  CAS  Google Scholar 

  32. Dempsey DT, Crosby LO, Mullen JL (1986) Indirect calorimetry in chair-adapted primates. JPEN J Parenter Enteral Nutr 10(3):324–7

    Article  PubMed  CAS  Google Scholar 

  33. Williams NI (2003) Lessons from experimental disruptions of the menstrual cycle in humans and monkeys. Med Sci Sports Exerc 35(9):1564–72

    Article  PubMed  Google Scholar 

  34. Rising R, Signaevsky M, Rosenblum LA, Kral JG, Lifshitz F (2008) Energy expenditure in chow-fed female non-human primates of various weights. Nutr Metab (Lond). 5:32

    Article  Google Scholar 

  35. Edgerton VR, Barnard RJ, Peter JB, Gillespie CA, Simpson DR (1972) Overloaded skeletal muscles of a nonhuman primate (Galago senegalensis). Exp Neurol 37(2):322–39

    Article  PubMed  CAS  Google Scholar 

  36. Rhyu IJ, Bytheway JA, Kohler SJ, Lange H, Lee KJ, Boklewski J, et al (2010) Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. Neuroscience 167(4):1239–48

    Article  PubMed  CAS  Google Scholar 

  37. Ivy JL, Coelho AM, Jr., Easley SP, Carley KD, Rogers WR, Shade RE (1994) Training adaptations of baboons to light and moderate treadmill exercise. J Med Primatol 23(8):442–9

    Article  PubMed  CAS  Google Scholar 

  38. Bourrin S, Zerath E, Vico L, Milhaud C, Alexandre C (1992) Bone mass and bone cellular variations after five months of physical training in rhesus monkeys: histomorphometric study. Calcif Tissue Int 50(5):404–10

    Article  Google Scholar 

  39. Zerath E, Milhaud C, Nogues C (1993) The effects of a 5-month physical training on iliac bone morphology in monkeys. Eur J Appl Physiol Occup Physiol 67(1):1–6

    Article  PubMed  CAS  Google Scholar 

  40. Ingram DK (2000) Age-related decline in physical activity: generalization to nonhumans. Med Sci Sports Exerc 32(9):1623–9

    Article  PubMed  CAS  Google Scholar 

  41. Sallis JF (2000) Age-related decline in physical activity: a synthesis of human and animal studies. Med Sci Sports Exerc 32(9):1598–600

    Article  PubMed  CAS  Google Scholar 

  42. Hales JR, Rowell LB, King RB.(1979) Regional distribution of blood flow in awake heat-stressed baboons. Am J Physiol 237(6):H705–12

    Google Scholar 

  43. Vatner SF (1978) Effects of exercise and excitement on mesenteric and renal dynamics in conscious, unrestrained baboons. Am J Physiol 234(2):H210–4

    Google Scholar 

  44. Malavolti M, Pietrobelli A, Dugoni M, Poli M, Romagnoli E, De Cristofaro P, et al (2007) A new device for measuring resting energy expenditure (REE) in healthy subjects. Nutr Metab Cardiovasc Dis 17(5):338–43

    Article  PubMed  Google Scholar 

  45. Berntsen S, Hageberg R, Aandstad A, Mowinckel P, Anderssen SA, Carlsen KH, et al (2008) Validity of physical activity monitors in adults participating in free-living activities. Br J Sports Med 44:657–664

    Article  PubMed  Google Scholar 

  46. St-Onge M, Mignault D, Allison DB, Rabasa-Lhoret R (2007) Evaluation of a portable device to measure daily energy expenditure in free-living adults. Am J Clin Nutr 85(3):742–9

    PubMed  CAS  Google Scholar 

  47. Fruin ML, Rankin JW (2004) Validity of a multi-sensor armband in estimating rest and exercise energy expenditure. Med Sci Sports Exerc 36(6):1063–9

    Article  PubMed  Google Scholar 

  48. Jakicic JM, Marcus M, Gallagher KI, Randall C, Thomas E, Goss FL, et al (2004) Evaluation of the SenseWear Pro Armband to assess energy expenditure during exercise. Med Sci Sports Exerc 36(5):897–904

    Article  PubMed  Google Scholar 

  49. King GA, Torres N, Potter C, Brooks TJ, Coleman KJ (2004) Comparison of activity monitors to estimate energy cost of treadmill exercise. Med Sci Sports Exerc 36(7):1244–51

    Article  PubMed  Google Scholar 

  50. Bertoli S, Posata A, Battezzati A, Spadafranca A, Testolin G, Bedogni G (2008) Poor agreement between a portable armband and indirect calorimetry in the assessment of resting energy expenditure. Clin Nutr 27(2):307–10

    Article  PubMed  CAS  Google Scholar 

  51. Calabro MA, Welk GJ, Eisenmann JC (2009) Validation of the SenseWear Pro Armband algorithms in children. Med Sci Sports Exerc 41(9):1714–20

    Article  PubMed  Google Scholar 

  52. Arvidsson D, Slinde F, Hulthen L (2009) Free-living energy expenditure in children using multi-sensor activity monitors. Clin Nutr 28(3):305–12

    Article  PubMed  Google Scholar 

  53. Arvidsson D, Slinde F, Larsson S, Hulthen L (2007) Energy cost of physical activities in children: validation of SenseWear Armband. Med Sci Sports Exerc 39(11):2076–84

    Article  PubMed  Google Scholar 

  54. Arvidsson D, Slinde F, Larsson S, Hulthen L (2009)Energy cost in children assessed by multisensor activity monitors. Med Sci Sports Exerc 41(3):603–11

    Article  PubMed  Google Scholar 

  55. Ridley K, Olds TS (2008) Assigning energy costs to activities in children: a review and synthesis. Med Sci Sports Exerc 40(8):1439–46

    Article  PubMed  Google Scholar 

  56. Dorminy CA, Choi L, Akohoue SA, Chen KY, Buchowski MS (2008) Validity of a multisensor armband in estimating 24-h energy expenditure in children. Med Sci Sports Exerc 40(4):699–706

    Article  PubMed  Google Scholar 

  57. Papazoglou D, Augello G, Tagliaferri M, Savia G, Marzullo P, Maltezos E, et al (2006) Evaluation of a multisensor armband in estimating energy expenditure in obese individuals. Obesity 14(12):2217–23

    Article  PubMed  Google Scholar 

  58. Cereda E, Pezzoli G, Barichella M (2009) Role of an electronic armband in motor function monitoring in patients with Parkinson’s disease. Nutrition 26(2):240–2

    Article  PubMed  Google Scholar 

  59. Cereda E, Turrini M, Ciapanna D, Marbello L, Pietrobelli A, Corradi E (2007) Assessing energy expenditure in cancer patients: a pilot validation of a new wearable device. J Parenter Enteral Nutr 31(6):502–7

    Article  Google Scholar 

  60. Dwyer TJ, Alison JA, McKeough ZJ, Elkins MR, Bye PT (2009) Evaluation of the SenseWear activity monitor during exercise in cystic fibrosis and in health. Respir Med 103(10):1511–7

    Article  PubMed  Google Scholar 

  61. Mafra D, Deleaval P, Teta D, Cleaud C, Perrot MJ, Rognon S, et al (2009) New measurements of energy expenditure and physical activity in chronic kidney disease. J Ren Nutr 19(1):16–9

    Article  PubMed  Google Scholar 

  62. Coelho AM, Jr., Carey KD (1990) A social tethering system for nonhuman primates used in laboratory research. Lab Anim Sci 40(4):388–94

    PubMed  Google Scholar 

  63. Gleeson M, McFarlin B, Flynn M.(2006) Exercise and Toll-like receptors. Exerc Immunol Rev 12:34–53

    PubMed  Google Scholar 

  64. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA, et al (2007) Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 56(8):1986–98

    Article  PubMed  CAS  Google Scholar 

  65. Prada PO, Ropelle ER, Mourao RH, de Souza CT, Pauli JR, Cintra DE, et al (2009) EGFR tyrosine kinase inhibitor (PD153035) improves glucose tolerance and insulin action in high-fat diet-fed mice. Diabetes 258(12):2910–9

    Article  Google Scholar 

  66. Lambert CP, Wright NR, Finck BN, Villareal DT (2008) Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons. J Appl Physiol 105(2):473–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Folli MD PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Casiraghi, F., Chavez, A.O., Musi, N., Folli, F. (2012). The Baboon as a Primate Model To Study the Physiology and Metabolic Effects of Exercise. In: Luzi, L. (eds) Cellular Physiology and Metabolism of Physical Exercise. Springer, Milano. https://doi.org/10.1007/978-88-470-2418-2_14

Download citation

Publish with us

Policies and ethics