Skip to main content

Cardiac Veins and Pulmonary Veins

  • Chapter
Clinical Applications of Cardiac CT

Abstract

In the field of noncoronary applications of cardiac CT the study of the cardiac and pulmonary veins is of great use for the cardiologist, the former particularly in patients with heart failure who require electrical resynchronization of the cardiac chambers (cardiac resynchronization therapy or biventricular pacing) and the latter in patients scheduled to undergo a catheter ablation procedure. Noninvasive cardiac imaging has the task of compiling an anatomic roadmap to render the interventional procedures more effective and efficient. Unlike the study of the coronary arteries, the aim is not to detect disease, but rather to accurately outline the regional anatomy, an objective which can be achieved thanks to the elevated spatial and temporal resolution of multidetector computed tomography (MDCT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gras D, Mabo P, Tang T et al (1998) Multisite pacing as a supplemental treatment of congestive heart failure: preliminary results of the Medtronic Inc. InSync Study. Pacing Clin Electrophysiol 21:2249–2255

    Article  PubMed  CAS  Google Scholar 

  2. Daubert JC, Ritter P, Le Breton H et al (1998) Permanent left ventricular pacing with transvenous leads inserted into the coronary veins. Pacing Clin Electrophysiol 21:239–245

    Article  PubMed  CAS  Google Scholar 

  3. Abraham WT, Fisher WG, Smith AL et al (2002) Cardiac resynchronization in chronic heart failure. N Engl J Med 346:1845–1853

    Article  PubMed  Google Scholar 

  4. Abraham WT, Hayes DL (2003) Cardiac resynchronization therapy for heart failure. Circulation 108:2596–2603

    Article  PubMed  Google Scholar 

  5. Puglisi A, Lunati M, Marullo AG et al (2004) Limited thoracotomy as a second choice alternative to transvenous implant for cardiac resynchronization therapy delivery. Eur Hearth J 25:1063–1069

    Article  Google Scholar 

  6. Ansalone G, Giannantoni P, Ricci R et al (2002) Doppler myocardial imaging to evacuate the effectiveness of pacing sites in patients receiving biventricular pacing. J Am Coll Cardiol 39:489–499

    Article  PubMed  Google Scholar 

  7. Melo WD, Prudencio LA, Kusnir CE et al (1998) Angiography of the coronary venous system. Use in clinical electrophysiology. Arq Bras Cardiol 70:409–413

    Article  PubMed  CAS  Google Scholar 

  8. Meisel E, Pfeiffer D, Engelmann L et al (2001) Investigation of coronary venous anatomy by retrograde venography in patients with malignant ventricular tachycardia. Circulation 104:442–447

    Article  PubMed  CAS  Google Scholar 

  9. Tada H, Kurosaki K, Naito S et al (2005) Three-dimensional visualization of the coronary venous system using multidetector row computed tomography. Circ J 69:165–170

    Article  PubMed  Google Scholar 

  10. Jongbloed MRM, Lamb HJ, Bax JJ et al (2005) Noninvasive visualization of the cardiac venous system using multislice computed tomography. J Am Coll Cardiol 45:749–753

    Article  PubMed  Google Scholar 

  11. Abbara S, Cury RC, Nieman K et al (2005) Noninvasive evaluation of cardiac veins with 16-MDCT angiography. AJA Am J Roentgenol 185:1001–1006

    Article  Google Scholar 

  12. Muhlenbruch G, Koos R, Wildberger JE et al (2005) Imaging of the cardiac venous system: comparison of MDCT and conventional angiography. AJR Am J Roentgenol 185:1252–1257

    Article  PubMed  Google Scholar 

  13. Cademartiri F, Marano R, Luccichenti G et al (2004) Normal anatomy of the vessels of the heart with 16-row multislice computed tomography. Radiol Med 107:11–23

    PubMed  Google Scholar 

  14. von Ludinghausen M (2003) The venous drainage of the human myocardium. Adv Anat Embryol Cell Biol 168:104

    Google Scholar 

  15. Van de Veire NR, Schuijf JD, De Kini J et al (2006) Noninvasive visualization of the cardiac venous system in coronary artery disease patients using 64-slice computed tomography. J Am Coll Cardiol 48:1832–1838

    Article  PubMed  Google Scholar 

  16. Kini S, Bis KG, Weaver L (2007) Normal and variant coronary arterial and venous anatomy on high-resolution CT angiography. AJR Am J Roentgenol 188:1665–1674

    Article  PubMed  Google Scholar 

  17. Butler J (2007) The emerging role of multi-detector computed tomography in heart failure. J Card Fail 13:215–226

    Article  PubMed  Google Scholar 

  18. Chen JJ, Lee WJ, Wang YC et al (2007) Morphologic and topologic characteristics of coronary venous system delineated by noninvasive multidetector computed tomography in chronic systolic heart failure patients. J Card Fail 13:482–488

    Article  PubMed  Google Scholar 

  19. Tops LF, Krishnàn SC, Schuijf JD et al (2008) Noncoronary applications of cardiac multidetector row computed tomography. JACC Cardiovasc Imaging 1:94–106

    Article  PubMed  Google Scholar 

  20. Lumia D, Laganà D, Canì A et al (2009) MDCT evaluation of the cardiac venous system. Radiol Med 114:837–851

    Article  PubMed  CAS  Google Scholar 

  21. Pontone G, Andreini D, Cortinovis S et al (2010) Imaging of cardiac venous system in patients with dilated cardiomyopathy by 64-slice computed tomography: comparison between non-ischemic and ischemic etiology. Int J Cardiol 144:340–343

    Article  PubMed  Google Scholar 

  22. Hua W, Ding LG, Zhang S et al (2010) Usefulness of previsualization of the cardiac venous system by 64-slice computed tomography in patients with heart failure underwent cardiac resynchronization therapy. Zhonghua Xin Xue Guan Bing Za Zhi 38:610–613

    PubMed  Google Scholar 

  23. Hara T, Yamashiro K, Okajima K et al (2009) Improvement in the quality of the cardiac vein images by optimizing the scan protocol of multidetector-row computed tomography. Heart Vessels 24:434–439

    Article  PubMed  Google Scholar 

  24. Matsumoto Y, Krishnan S, Fowler SJ et al (2007) Detection of phrenic nerves and their relation to cardiac anatomy using 64-slice multidetector computed tomography. Am J Cardiol 100:133–137

    Article  PubMed  Google Scholar 

  25. Nezafat R, Han Y, Peters DC, Herzka DA et al (2007) Coronary magnetic resonance vein imaging: imaging contrast, sequence, and timing. Magn Reson Med 58:1196–1206

    Article  PubMed  Google Scholar 

  26. Rasche V, Binner L, Cavagna F et al (2007) Whole-heart coronary vein imaging: a comparison between non-contrast-agent-and contrast-agent-enhanced visualization of the coronary venous system. Magn Reson Med 57:1019–1026

    Article  PubMed  Google Scholar 

  27. Chiribiri A, Kelle S, Götze S et al (2008) Visualization of the cardiac venous system using cardiac magnetic resonance. Am J Cardiol 101:407–412

    Article  PubMed  Google Scholar 

  28. Younger JF, Plein S, Crean A et al (2009) Visualization of coronary venous anatomy by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 11:26

    Article  PubMed  Google Scholar 

  29. Stoeck CT, Han Y, Peters DC et al (2009) Whole heart magnetization-prepared steady-state free precession coronary vein MRI. J Magn Reson Imaging 29:1293–1299

    Article  PubMed  Google Scholar 

  30. Ghaye B, Szapiro D, Dacher JN et al (2003) Percutaneous ablation for atrial fibrillation: the role of cross-sectional imaging. Radio Graphics 23:19–33

    Google Scholar 

  31. Lacomis JM, Wigginton W, Fuhrman C et al (2003) Multi-detector row CT of the left atrium and pulmonary veins before radiofrequency catheter ablation for atrial fibrillation. RadioGraphics 23:35–48

    Article  Google Scholar 

  32. Schwartzman D, Lacomis J, Wigginton G (2003) Characterization of left atrium and distal pulmonary vein morphology using multidimensional computed tomography. J Am Coll Cardiol 41:1349–1357

    Article  PubMed  Google Scholar 

  33. Maksimovic R, Cademartiri F, Scholten M et al (2004) Sixteen-row multislice computed tomography in the assessment of pulmonary veins prior to ablative treatment: validation vs conventional venography and study of reproducibility. Eur Radiol 14:369–374

    Article  PubMed  Google Scholar 

  34. Cronin P, Sneider MB, Kazerooni EA et al (2004) MDCT of the left atrium and pulmonary veins in planning radiofrequency ablation for atrial fibrillation: a how-to guide. AJR Am J Roentgenol 183:767–778

    PubMed  Google Scholar 

  35. Centonze M, Del Greco M, Nollo G et al (2005) The role of multidetector CT in the evaluation of the left atrium and pulmonary veins anatomy before and after radio-frequency catheter ablation for atrial fibrillation. Preliminary results and work in progress. Radiol Med 110:52–60

    PubMed  Google Scholar 

  36. Jongbloed MR, Dirksen MS, Bax JJ et al (2005) Atrial fibrillation: multi-detector row CT of pulmonary vein anatomy prior to radiofrequency catheter ablation-initial experience. Radiology 234:702–709

    Article  PubMed  Google Scholar 

  37. Kim Y-H, Marom EM, Herndon JE et al (2005) Pulmonary vein diameter, cross sectional area and shape: CT analysis. Radiology 235:43–49

    Article  PubMed  Google Scholar 

  38. Pappone C, Rosanio S, Oreto G et al (2000) Circumferential radiofrequency ablation of pulmonary vein ostia: a new anatomic approach for curing atrial fibrillation. Circulation 102:2619–2628

    PubMed  CAS  Google Scholar 

  39. Pappone C, Oreto G, Rosanio S et al (2001) Atrial electroanatomic remodeling after circumferential radiofrequency pulmonary vein ablation: efficacy of an anatomic approach in a large cohort of patients with atrial fibrillation. Circulation 104:2539–2544

    Article  PubMed  CAS  Google Scholar 

  40. Arentz T, Jander N, von Rosenthal J et al (2003) Incidence of pulmonary vein stenosis 2 years after radiofrequency catheter ablation of refractory atrial fibrillation. Eur Heart J 24:963–969

    Article  PubMed  Google Scholar 

  41. Dill T, Neumann T, Ekinci O et al (2003) Pulmonary vein diameter reduction after radiofrequency catheter ablation for paroxysmal atrial fibrillation evaluated by contrast-enhanced three-dimensional magnetic resonance imaging. Circulation 107:845–850

    Article  PubMed  Google Scholar 

  42. Chung B, Yucel EK, Rolnick J et al (2002) Morphology and variations of the pulmonary veins: classification and dimensions using 3D-CTA models (abstr). Radiology 225:155

    Article  Google Scholar 

  43. Budorick NE, McDonald V, Flisak ME et al (1989) The pulmonary veins. Semin Roentgenol 24:127–140

    Article  PubMed  CAS  Google Scholar 

  44. Healey JE (1952) An anatomic survey of anomalous pulmonary veins: their clinical significance. Thorac Surg 23:433–444

    Google Scholar 

  45. Marom EM, Herndon JE, Kim Y-H et al (2004) Variations in pulmonary venous drainage to the left atrium: implications for radiofrequency ablation. Radiology 230:824–829

    Article  PubMed  Google Scholar 

  46. Ho SY, Sanchez-Quintana D, Cabrera JA et al (1999) Anatomy of the left atrium: implications for radiofrequency ablation for atrial fibrillation. J Cardiovascular Electrophysiol 10:1525–1533

    Article  CAS  Google Scholar 

  47. Kato R, Lickfett L, Meininger G et al (2003) Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation. Circulation 107:2004–2010

    Article  PubMed  Google Scholar 

  48. Wittkampf FH, Vonken EJ, Derksen R et al (2003) Pulmonary vein ostium geometry: analysis by magnetic resonance angiography. Circulation 107:21–23

    Article  PubMed  Google Scholar 

  49. Ravenel JG, McAdams HP (2002) Pulmonary venous infarction after radiofrequency ablation for atrial fibrillation. AJR Am J Roentgenol 178:664–666

    PubMed  Google Scholar 

  50. Haissaguerre M, Jais P, Shah DC et al (2000) Electrophysiological end point for catheter ablation of atrial fibrillation initiated from multiple pulmonary venous foci. Circulation 101:1409–1417

    PubMed  CAS  Google Scholar 

  51. Qureshi AM, Prieto LR, Latson LA et al (2003) Transcatheter angioplasty for acquired pulmonary vein stenosis after radiofrequency ablation. Circulation 108:1336–1342

    Article  PubMed  Google Scholar 

  52. Holmes DR Jr, Monahan KH, Packer D (2009) Pulmonary vein stenosis complicating ablation for atrial fibrillation: clinical spectrum and interventional considerations. JACC Cardiovasc Interv 2:267–276

    Article  PubMed  Google Scholar 

  53. Saremi F, Tafti M (2009) The role of computed tomography and magnetic resonance imaging in ablation procedures for treatment of atrial fibrillation. Semin Ultrasound CT MR 30:125–156

    Article  PubMed  Google Scholar 

  54. Preis O, Digumarthy SR, Wright CD et al (2007) Atrioesophageal fistula after catheter pulmonary venous ablation for atrial fibrillation: imaging features. J Thorac Imaging 22:283–285

    Article  PubMed  Google Scholar 

  55. Schmidt B, Ernst S, Ouyang F (2006) External and endoluminal analysis of left atrial anatomy and the pulmonary veins in three-dimensional reconstructions of magnetic resonance angiography: the full insight from inside. J Cardiovasc Electrophysiol 17:957–964

    Article  PubMed  Google Scholar 

  56. Mansour M, Refaat M, Heist EK et al (2006) Three-dimensional anatomy of the left atrium by magnetic resonance angiography: implications for catheter ablation for atrial fibrillation. J Cardiovasc Electrophysiol 17:719–723

    Article  PubMed  Google Scholar 

  57. Anselme F, Gahide G, Savouré A et al (2006) MR evaluation of pulmonary vein diameter reduction after radiofrequency catheter ablation of atrial fibrillation. Eur Radiol 16:2505–2511

    Article  PubMed  Google Scholar 

  58. Katoh M, Bücker A, Mühlenbruch G et al (2006) Impact of ECG gating in contrast-enhanced MR angiography for the assessment of the pulmonary veins and the left atrium anatomy. Rofo 178:180–184

    Article  PubMed  CAS  Google Scholar 

  59. Hauser TH, Peters DC, Wylie JV et al (2008) Evaluating the left atrium by magnetic resonance imaging. Europace 10 (Suppl 3):iii22–27

    Article  PubMed  Google Scholar 

  60. Allgayer C, Zellweger MJ, Sticherling C et al (2008) Optimization of imaging before pulmonary vein isolation by radiofrequency ablation: breath-held ungated versus ECG/breath-gated MRA. Eur Radiol 18:2879–2884

    Article  PubMed  CAS  Google Scholar 

  61. Hamdan A, Charalampos K, Roettgen R et al (2009) Magnetic resonance imaging versus computed tomography for characterization of pulmonary vein morphology before radiofrequency catheter ablation of atrial fibrillation. Am J Cardiol 104:1540–1546

    Article  PubMed  Google Scholar 

  62. Krishnam MS, Tomasian A, Malik S et al (2009) Three-dimensional imaging of pulmonary veins by a novel steady-state free-precession magnetic resonance angiography technique without the use of intravenous contrast agent: initial experience. Invest Radiol 44:447–453

    Article  PubMed  Google Scholar 

  63. Hu P, Chuang ML, Kissinger KV et al (2010) Non-contrast-enhanced pulmonary vein MRI with a spatially selective slab inversion preparation sequence. Magn Reson Med 63:530–536

    Article  PubMed  Google Scholar 

  64. Peters DC, Wylie JV, Hauser TH et al (2007) Detection of pulmonary vein and left atrial scar after catheter ablation with three-dimensional navigator-gated delayed enhancement MR imaging: initial experience. Radiology 243:690–695

    Article  PubMed  Google Scholar 

  65. McGann CJ, Kholmovski EG, Oakes RS et al (2008) New magnetic resonance imaging-based method for defining the extent of left atrial wall injury after the ablation of atrial fibrillation. J Am Coll Cardiol 52:1263–1271

    Article  PubMed  Google Scholar 

  66. Badger TJ, Adjei-Poku YA, Marrouche NF (2009) MRI in cardiac electrophysiology: the emerging role of delayed-enhancement MRI in atrial fibrillation ablation. Future Cardiol 5:63–70

    Article  PubMed  Google Scholar 

  67. Peters DC, Wylie JV, Hauser TH et al (2009) Recurrence of atrial fibrillation correlates with the extent of post-procedural late gadolinium enhancement: a pilot study. JACC Cardiovasc Imaging 2:308–316

    Article  PubMed  Google Scholar 

  68. Oakes RS, Badger TJ, Kholmovski EG et al (2009) Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation 119:1758–1767

    Article  PubMed  Google Scholar 

  69. Badger TJ, Daccarett M, Akoum NW et al (2010) Evaluation of left atrial lesions after initial and repeat atrial fibrillation ablation: lessons learned from delayed-enhancement MRI in repeat ablation procedures. Circ Arrhythm Electrophysiol 3:249–259

    Article  PubMed  Google Scholar 

  70. Grunert P, Darabi K, Espinosa J et al (2003) Computer-aided navigation in neurosurgery. Neurosurg Rev 26:73–99

    Article  PubMed  CAS  Google Scholar 

  71. Peters TM, Clark JA, Olivier A et al (1986) Integrated stereotaxic imaging with CT, MR imaging, and digital subtraction angiography. Radiology 161:821–826

    PubMed  CAS  Google Scholar 

  72. Peters TM (2006) Image-guidance for surgical procedures. Phys Med Biol 51:505–540

    Article  Google Scholar 

  73. Reddy VY, Malchano ZJ, Holmvang G et al (2004) Integration of cardiac magnetic resonance imaging with three-dimensional electroanatomic mapping to guide left ventricular catheter manipulation: feasibility in a porcine model of healed myocardial infarction. J Am Coll Cardiol 44:2202–2213

    Article  PubMed  Google Scholar 

  74. Nollo G, Cristoforetti A, Faes L et al (2004) Registration and fusion of segmented left atrium CT images with CARTO electrical maps for the ablative treatment of atrial fibrillation. Comput Cardiol 31:345–348

    Article  Google Scholar 

  75. Del Greco M, Ravelli F, Cristoforetti A et al (2005) Fusion of electrical maps and MDCT images for validation of left atrium ablation points. Europace 7:14

    Google Scholar 

  76. Tops LF, Bax JJ, Zeppenfeld K et al (2005) Fusion of multislice computed tomography imaging with three-dimensional electroanatomic mapping to guide radiofrequency catheter ablation procedures. Heart Rhythm 2:1076–1081

    Article  PubMed  Google Scholar 

  77. Ravelli F, Faes L, Sandrini L et al (2005) Wave-similarity mapping shows the spatiotemporal distribution of fibrillatory wave complexity in the human right atrium during paroxysmal and chronic atrial fibrillation. J Cardiovasc Electrophysiol 16:1071–1076

    Article  PubMed  Google Scholar 

  78. Packer DL (2005) Three-dimensional mapping in interventional electrophysiology: techniques and technology. Journal of Cardiovascular Electrophysiol 16:1110–1116

    Article  Google Scholar 

  79. Wood MA, Ellenbogen KA (2006) Catheter ablation of chronic atrial fibrillation — the gap between promise and practice. New Engl J Med 354:967–969

    Article  PubMed  CAS  Google Scholar 

  80. Sra J, Krum D, Hare J et al (2005) Feasibility and validation of registration of three-dimensional left atrial models derived from computed tomography with a noncontact cardiac mapping system. Heart Rhythm 2:55–63

    Article  PubMed  Google Scholar 

  81. Disertori M, Marini M, Cristoforetti A et al (2005) Enormous biatrial enlargement in a persistent idiopathic atrial standstill. Eur Heart J 26:2276

    Article  PubMed  Google Scholar 

  82. Vincent L, Soille P (1991) Watershed in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Machine Intell 13:583–598

    Article  Google Scholar 

  83. Nollo G, Cristoforetti A, Del Greco M et al (2004) Fusion of electroanatomic maps with 3D tomographic images of the left atrium and pulmonary veins in patients with atrial fibrillation. Eur Heart J 25:344

    Google Scholar 

  84. Sra J (2005) Registration of three dimensional left atrial images with interventional systems. Heart 91:1098–1104

    Article  PubMed  Google Scholar 

  85. Reddy VY, Malchano ZJ, Neuzil P et al (2005) Early clinical experience with Carto-merge for integration of 3D-CT imaging with real-time mapping to guide catheter ablation of atrial fibrillation. Heart Rhythm 2:160

    Article  Google Scholar 

  86. Mikaelian BJ, Malchano ZJ, Neuzil P et al (2005) Images in cardiovascular medicine. Integration of 3-dimensional cardiac computed tomography images with real-time electroanatomic mapping to guide catheter ablation of atrial fibrillation. Circulation 112:35–36

    Article  Google Scholar 

  87. Dong J, Dickfeld T, Dalal D et al (2006) Initial experience in the use of integrated electroanatomic mapping with three-dimensional MR/CT images to guide catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 17:459–466

    Article  PubMed  Google Scholar 

  88. Bertaglia E, Brandolino G, Zoppo F et al (2008) Integration of three-dimensional left atrial magnetic resonance images into a real-time electroanatomic mapping system: validation of a registration method. Pacing Clin Electrophysiol 31:273–282

    Article  PubMed  Google Scholar 

  89. Kettering K, Greil GF, Fenchel M et al (2009) Catheter ablation of atrial fibrillation using the Navx-/Ensite-system and a CT-/MRI-guided approach. Clin Res Cardiol 2009 98:285–296

    Article  Google Scholar 

  90. Bertaglia E, Bella PD, Tondo C et al (2009) Image integration increases efficacy of paroxysmal atrial fibrillation catheter ablation: results from the CartoMerge Italian Registry. Europace 11:1004–1010

    Article  PubMed  Google Scholar 

  91. Caponi D, Corleto A, Scaglione M et al (2010) Ablation of atrial fibrillation: does the addition of three-dimensional magnetic resonance imaging of the left atrium to electroanatomic mapping improve the clinical outcome? A randomized comparison of Carto-Merge vs. Carto-XP three-dimensional mapping ablation in patients with paroxysmal and persistent atrial fibrillation. Europace 12:1098–1104

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Centonze, M., Casagranda, G., Del Greco, M., Laudon, A., Cristoforetti, A., Nollo, G. (2012). Cardiac Veins and Pulmonary Veins. In: Cademartiri, F., Casolo, G., Midiri, M. (eds) Clinical Applications of Cardiac CT. Springer, Milano. https://doi.org/10.1007/978-88-470-2522-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2522-6_17

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2521-9

  • Online ISBN: 978-88-470-2522-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics