Skip to main content

Recent Developments in Breast Ultrasound with a Special Focus on Shear-Wave Elastography

  • Chapter
Diseases of the Chest and Heart 2015–2018
  • 1264 Accesses

Abstract

Since the first use of breast ultrasound by Wild and Reid [1] in 1953, it has taken half a century to achieve a level of ultrasound technology that allows it to be considered as a multimodality imaging tool for use at the highest level in breast diagnostics. Ultrasound has been described to detect mammographically occult breast cancer [2]. Indeed, mammography and ultrasound are complementary imaging tools for breast examination in everyday practice. The main indications for breast ultrasound are mammographically dense breasts, unclear or suspicious findings on mammography, patients with breast complaints, preoperative localization of breast cancer, aftercare of breast cancer patients, evaluation of high risk patients (familial history of BRCA 1 and 2 mutation), and second-look sonography after magnetic resonance imaging (MRI) [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woo J (2004) A short history of the development. Radiol Clin N Am 42:845–851.

    Article  Google Scholar 

  2. Berg WA, Blume JD, Cormack JB et al (2008) Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA 299:2151–2163.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Mundinger A, Wilson ARM, Weisman C et al (2008) Breast ultrasound-update. EJC Supplements 9:11–14.

    Google Scholar 

  4. ACR BI-RADS — Ultrasound (2003). In: ACR Breast Imaging Reporting and Data System, Breast Imaging Atlas. American college of Radiology, Reston, VA.

    Google Scholar 

  5. Candelaria RP, Hwang L, Bouchard RR et al (2013) Breast ultrasound: current concepts. Semin Ultrasound CT MR 34:213–225.

    Article  PubMed  Google Scholar 

  6. Mendelson EB, Böhm-Vélez M, Berg WA et al (2013) ACR BI-RADS® Ultrasound. In: ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. American College of Radiology, Reston, VA.

    Google Scholar 

  7. Sehgal CM, Weinstein SP, Arger PH et al (2006) A review of breast ultrasound. J Mammary Gland Biol Neoplasia 11:113–123.

    Article  PubMed  Google Scholar 

  8. Rosen EL, Soo MS (2001) Tissue harmonic imaging sonography of breast lesions: improved margin analysis, conspicuity, and image quality compared to conventional ultrasound. Clin Imaging 25:379–384.

    Article  CAS  PubMed  Google Scholar 

  9. Szopinski KT, Pajk AM, Wysocki M et al (2003) Tissue harmonic imaging: utility in breast sonography. J Ultrasound Med 22:479–487.

    PubMed  Google Scholar 

  10. Hartmann A, Kunz M, Köstlin S et al (1999) Hypoxia-induced up-regulation of angiogenin in human malignant melanoma. Cancer Res 59:1578–1583.

    CAS  PubMed  Google Scholar 

  11. Milz P, Lienemann A, Kessler M et al (2001) Evaluation of breast lesions by power Doppler sonography. Eur Radiol 11:547–554.

    Article  CAS  PubMed  Google Scholar 

  12. Gokalp G, Topal U, Kizilkaya E (2009) Power Doppler sonography: anything to add to BI-RADS US in solid breast masses? Eur J Radiol 70:77–85.

    Article  PubMed  Google Scholar 

  13. Carpentier GL, Roubidoux MA, Fowlkes JB et al (2008) Suspicious breast lesions: assessment of 3D Doppler US indexes for classification in a test population and fourfold cross-validation scheme. Radiology 249:463–470.

    Article  Google Scholar 

  14. Raza S, Baum JK (1997) Solid breast lesions: evaluation with power Doppler US. Radiology 203:164–168.

    Article  CAS  PubMed  Google Scholar 

  15. Madjar H, Sauerbrei W, Hansen L (2011) Multivariate analysis of flow data in breast lesions and validation in a normal clinical setting. Ultraschall Med 32:511–517.

    Article  CAS  PubMed  Google Scholar 

  16. Svensson WE, Pandian AJ, Hashimoto H (2010) The use of breast ultrasound color Doppler vascular pattern morphology improves diagnostic sensitivity with minimal change in specificity. Ultraschall Med 31:466–474.

    Article  CAS  PubMed  Google Scholar 

  17. Krouskop TA, Wheeler TM, Kallel F et al (1998) Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 20:260–274.

    Article  CAS  PubMed  Google Scholar 

  18. Fischer T, Sack I, Thomas A (2013) Characterization of focal breast lesions by means of elastography. Rofo 185:816–823.

    Article  CAS  PubMed  Google Scholar 

  19. Barr RG, Destounis S, Lackey LB 2nd et al (2012) Evaluation of breast lesions using sonographic elasticity imaging: a multicenter trial. J Ultrasound Med 31:281–287.

    PubMed  Google Scholar 

  20. Itoh A, Ueno E, Tohno E et al (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239:341–350.

    Article  PubMed  Google Scholar 

  21. Fischer T, Peisker U, Fiedor S et al (2012) Significant differentiation of focal breast lesions: raw data-based calculation of strain ratio. Ultraschall Med 33:372–379.

    Article  CAS  PubMed  Google Scholar 

  22. Thomas A, Degenhardt F, Farrokh A et al (2010) Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Acad Radiol 17:558–563.

    Article  PubMed  Google Scholar 

  23. Thomas A, Kümmel S, Fritzsche F et al (2006) Real-time sonoelastography performed in addition to B-mode ultrasound and mammography: improved differentiation of breast lesions? Acad Radiol 13:1496–504.

    Article  PubMed  Google Scholar 

  24. Yoon JH, Kim MH, Kim EK et al (2011) Interobserver variability of ultrasound elastography: how it affects the diagnosis of breast lesions. AJR Am J Roentgenol 196:730–736.

    Article  PubMed  Google Scholar 

  25. Zhi H, Xiao XY, Yang HY et al (2010) Ultrasonic elastography in breast cancer diagnosis: strain ratio vs 5-point scale. Acad Radiol 17:1227–1233.

    Article  PubMed  Google Scholar 

  26. Mansour SM, Omar OS (2012) Elastography ultrasound and questionable breast lesions: does it count? Eur J Radiol 81:3234–3244.

    Article  PubMed  Google Scholar 

  27. Cosgrove DO, Berg WA, Doré CJ et al (2012) Shear wave elastography for breast massesis highly reproducible. Eur Radiol 22:1023–1032.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Cosgrove D, Piscaglia F, Bamber et al (2013) EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall Med 34:238–253.

    Article  CAS  PubMed  Google Scholar 

  29. Tozaki MI, Fukuma E (2011) Pattern classification of Shear-Wave™ Elastography images for differential diagnosis between benign and malignant solid breast masses. Acta Radiol 52:1069–1075.

    Article  PubMed  Google Scholar 

  30. Berg WA, Cosgrove DO, Doré CJ et al (2012) Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology 262:435–449.

    Article  PubMed  Google Scholar 

  31. Schäfer FK, Hooley RJ, Ohlinger R et al (2013) ShearWave™ Elastography BE1 multinational breast study: additional SWE™ features support potential to downgrade BI-RADS®-3 lesions. Ultraschall Med 34:254–259.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Italia

About this chapter

Cite this chapter

Kurtz, C. (2015). Recent Developments in Breast Ultrasound with a Special Focus on Shear-Wave Elastography. In: Hodler, J., von Schulthess, G.K., Kubik-Huch, R.A., Zollikofer, C.L. (eds) Diseases of the Chest and Heart 2015–2018. Springer, Milano. https://doi.org/10.1007/978-88-470-5752-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5752-4_35

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5751-7

  • Online ISBN: 978-88-470-5752-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics