Skip to main content

Grape Bud Dormancy Release − The Molecular Aspect

  • Chapter
Grapevine Molecular Physiology & Biotechnology

Grapevine is a woody temperate-zone perennial. As such, it presents a period of active growth from spring to fall, followed by a rest period in the winter. Soon after bud burst in the spring, a complex bud is formed within the axil of each leaf on the young shoot. In the prophyll of the prompt bud, which may burst within the same growing season and develop into a lateral shoot, three latent buds are formed, known as the primary, secondary and tertiary buds. During the spring and early summer, about 10 leaf primordia develop in each of these buds, while inflorescence primordia develop mainly in the primary bud (Boss et al. 2003 and references therein). In mid-summer, the latent buds enter a phase of paradormancy, in which bud burst is repressed by factors originating in other plant organs, such as auxin from the apical meristem (Lang 1987, Lavee and May 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderberg RJ, Walker-Simmons MK (1992) Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci USA 89:10183-10187

    Article  PubMed  CAS  Google Scholar 

  • Anderson MC, Chen Z, Klessig FD (1998) Possible involvement of lipid peroxidation in salicylic acid mediated induction of PR-1 gene expression. Phytochemistry 47:555-566

    Article  CAS  Google Scholar 

  • Anil VS, Harmon AC, Rao KS (2000) Spatio-temporal accumulation and activity of calciumdependent protein kinases during embryogenesis, seed development, and germination in sandalwood. Plant Physiol 122:1035-1043

    Article  PubMed  CAS  Google Scholar 

  • Awasthi YC, Ansari GA, Awasthi S (2005) Regulation of 4-hydroxynonenal mediated signalling by glutathione S-transferases. Meth Enzymol 401:379-407

    Article  PubMed  CAS  Google Scholar 

  • Baud S, Vaultier MN, Rochat C (2004) Structure and expression of the sucrose synthase multigene family in Arabidopsis. J Exp Bot 396:397-409

    Article  Google Scholar 

  • Baxter CJ, Redestig H, Schauer N, Repsilber D, Patil KR, Nielsen J, Selbig J, Liu J, Fernie AR, Sweetlove LJ (2007) The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol 143(1):312-325

    CAS  Google Scholar 

  • Beverige CA, Mathesius U, Rose RJ, Gresshoff PM (2007) Common regulatory themes in meristem development and whole-plant homeostasis. Curr Opin Plant Biol 10:44-51

    Article  CAS  Google Scholar 

  • Boss PK, Elise J, Buckeridge AP, Thomas M (2003) New insights into grapevine flowering. Funct Plant Biol 30:593-606

    Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. Am Soc Plant Physiol. Rockville, MD

    Google Scholar 

  • Cattivelli L, Bartlet D (1992) Biochemical and molecular biology of cold-inducible enzymes and proteins in higher plants. In: Wray JL (ed) Society for experimental biology seminar series 49: Inducible plant proteins. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Clifton R, Millar AH, Whelan J (2006) Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of nonphosphorylating bypasses. Biochim Biophys Acta 1757:730-741

    Article  PubMed  CAS  Google Scholar 

  • Conrath U, Silva H, Klessig DF (1997) Protein dephosphorylation mediates salicylic acid-induced expression of Pr-1 genes in tobacco. Plant J 11:747-757

    Article  CAS  Google Scholar 

  • Dat JF, Lop H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351-1357

    Article  PubMed  CAS  Google Scholar 

  • Dookazalian NK (1999) Chilling temperature and duration interact on the budbreak of ‘Perlette’ grapevine cuttings. HortScience 34:1054-1056

    Google Scholar 

  • Dookazalian NK, Williams LE (1995) Chilling exposure and hydrogen cyanamide interact in breaking dormancy of grape buds. HortScience 30:1244-1247

    Google Scholar 

  • Edwards R, Dixon DP (2005) Plant glutathione transferases. Meth Enzymol 401:169-186

    Article  PubMed  CAS  Google Scholar 

  • Erez A (1987) Chemical control of bud break. HortScience 22:1240-1243

    CAS  Google Scholar 

  • Erez A, Fishman S, Linsley-Noakes GC, Allan P (1990) The dynamic model for rest completion in peach buds. Acta Hort 276:165-174

    Google Scholar 

  • Erez A, Lavee S (1974) Recent advances in breaking the dormancy of deciduous fruit trees. In: Proc 19th Intl Hort Congress, Warszawa. 3:69–78 Faust M, Erez A, Rowland IJ, Wang SY, Norman HA (1997) Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance, and release. HortScience 32:623-628

    Google Scholar 

  • Fei Z, Tang X, Alba R, White J, Ronning C, Martin G, Tanksley S, Giovannoni J (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J 40:47- 59

    Article  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torresk MA, Linstead P, Costa S, Bronlee C, Jonesk JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442-446.

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Lopes-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathioneassociated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100:1554- 1561

    Article  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071. doi: 10.1111/j.1365-3040.2005.01327.x

    Google Scholar 

  • Gallais S, de Crescenzo M-AP, Laval-Martin DL (2000) Changes in soluble and membranebound isoforms of calcium-calmodulin-dependent and -independent NAD+ kinase, during the culture of after-ripened and dormant seeds of Avena sativa. Aust J Plant Physiol 27:649-658

    CAS  Google Scholar 

  • Gallais S, de Crescenzo MA-P, Laval-Martin DL (2001) Characterization of soluble calcium calmodulin-dependent and -independent NAD+ kinases from Avena sativa seeds. Aust J Plant Physiol 28:363-371

    CAS  Google Scholar 

  • Gelhaye E, Rouhier N, Gerard J, Jolivet Y, Gualberto J, Navrot N, Ohlsson PI, Wingsle G, Hirasawa M, Knaff DB, Wang H, Dizengremel P, Meyer Y, Jacquot JP (2004) A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proc Natl Acad Sci USA 101:14545-14550

    Article  PubMed  CAS  Google Scholar 

  • Gu R, Fonseca S, Puskas LG, Hackler L Jr, Zvara A, Dudits D, Pais MS (2004) Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol 24:265-276

    PubMed  CAS  Google Scholar 

  • Halaly T, Pang X, Batikoff T, Keilin T, Crane O, Keren A, Venkateswari J, Ogrodovitch A, Or E (2008) Similar mechanisms are triggered by alternative external stimuli that induce dormancy release: comparative study of the effects of hydrogen cyanamide and heat shock on dormancy release in grape buds. Planta 228:79-88

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG (1994) Ways of coping with stress. Nature 370:599-600

    Article  PubMed  CAS  Google Scholar 

  • Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA, Thompson CB (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8(4):311-321

    Article  PubMed  CAS  Google Scholar 

  • Jacquot JP, Gelhaye E, Rouhier N, Corbier C, Didierjean C, Aubry A (2002) Thioredoxins and related proteins in photosynthetic organisms: molecular basis for thiol dependent regulation. Biochem Pharmacol 64:1065-1069

    Article  PubMed  CAS  Google Scholar 

  • Juszczuk IM, Rychter AM (2003) Alternative oxidase in higher plants. Acta Biochim Pol 50:1257-1271

    PubMed  CAS  Google Scholar 

  • Kadir SA, Proebsting EL (1994) Screening sweet cherry selections for dormant floral bud hardiness. HortScience 29:104-106

    Google Scholar 

  • Keilin T, Pang X, Venkateswari J, Halaly T, Crane O, Keren A, Ogrodovitch A, Ophir R, Volpin H, Galbraith D, Or E (2007) Digital expression profiling of a grape-bud EST collection leads to new insight into molecular events during grape-bud dormancy release. Plant Sci 173:446- 557

    Article  CAS  Google Scholar 

  • Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S (2003) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15:411-423

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein DJ, Dietrich RA, Martin AC, Last RL, Dangl JL (1999) LSD1 regulates salicylic acid induction of copper zinc superoxide dismutase in Arabidopsis thaliana. Mol Plant- Microbe Interact 12:1022-1026

    Article  PubMed  CAS  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235-246

    Article  PubMed  CAS  Google Scholar 

  • Koussa T, Broquedis M, Bouard J (1994) Changes of abscisic acid level during the development of grapevine latent buds, particularly in the phase of dormancy break. Vitis 33:63-67

    CAS  Google Scholar 

  • Laloi C, Mestres-Ortega D, Marco Y, Meyer Y, Reichheld JP (2004) The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol 134:1006–1016Lang GA (1987) Dormancy: A new universal terminology. HortScience 22:817-820

    Article  PubMed  CAS  Google Scholar 

  • Lavee S, May P (1997) Dormancy of grapevine buds. Aust J Grape Wine Res 3:31-46

    Article  CAS  Google Scholar 

  • Marana C, Garcia-Olmedo F, Carbonero P (1990) Differential expression of two types of sucrose synthase-encoding genes in wheat in response to anaerobiosis, cold shock and light. Gene 88:167-172

    Article  PubMed  CAS  Google Scholar 

  • Marchand C, Marechal PL, Meyer Y, Miginiac-Maslow M, Issakidis-Bourguet E, Decottignies P (2004) New targets of Arabidopsis thioredoxins revealed by proteomic analysis. Proteomics 4:2696-2706

    Article  PubMed  CAS  Google Scholar 

  • Mathiason K, He D, Grimplet J, Venkateswari J, Galbraith DW, Or E, Fennell A. (2008) Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. Funct Integr Genomics. 2008: [Epub ahead of print]

    Google Scholar 

  • Mazel A, Leshem Y, Tiwari BS, Levine A (2004) Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol 134:118-128

    Article  PubMed  CAS  Google Scholar 

  • Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SDA, McNicol J, Cardle L, Morris J, Viola R, Brennan R, Hedley PE, Taylor MA (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58:1035-1045

    Article  PubMed  CAS  Google Scholar 

  • Molen T, Rosso D, Piercy S, Maxwell DP (2006) Characterization of the alternative oxidase of Chlamydomonas reinhardtii in response to oxidative stress and a shift in nitrogen source. Physiol Plant 127:74–86. doi: 10.1111/j.1399-3054.2006.00643.x

    Google Scholar 

  • Molendijk AJ, Ruperti B, Palme K (2004) Small GTPases in vesicle trafficking. Curr Opin Plant Biol 7:694-700

    Article  PubMed  CAS  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561- 591

    Article  PubMed  CAS  Google Scholar 

  • Muthalif MM, Rowland IJ (1994) Identification of dehydrin-like proteins responsive to chilling in floral buds of bluebery (vaccinium, section cyanococcus). Plant Physiol 104:1439-1447

    Article  PubMed  CAS  Google Scholar 

  • Nie X, Hill RD (1997) Mitochondrial respiration and hemoglobin gene expression in barley aleurone tissue. Plant Physiol. 114:835-840

    PubMed  CAS  Google Scholar 

  • Nir G, Shulman Y, Fanberstein L, Lavee S (1986) Changes in the activity of catalase (EC 1.11.1.6) in relation to the dormancy of grapevine (Vitis vinifera L.) buds. Plant Physiol 81:1140-1142

    Article  PubMed  CAS  Google Scholar 

  • Or E, Nir G, Vilozny I (1999) Timing of hydrogen cyanamide application to grapevine buds. Vitis 38:1-6

    CAS  Google Scholar 

  • Or E, Belausov E, Popilevsky I, Ben Tal Y (2000a) Changes in endogenous ABA level in relation to the dormancy cycle in grapevine grown in hot climate. J Hort Sci Biotechnol 75:190-194

    Google Scholar 

  • Or E, Vilozny I, Eyal Y, Ogrodovitch A (2000b) The transduction of the signal for grape bud dormancy breaking, induced by hydrogen cyanamide, may involve the SNF-like protein kinase GDBRPK. Plant Mol Biol 43:483-489

    Google Scholar 

  • Or E, Vilozny I, Fennell A, Eyal Y, Ogrodovitch A (2002) Dormancy in grape buds: isolation and characterization of catalase cDNA and analysis of its expression following chemical induction of bud dormancy release. Plant Sci 162:121-130

    Article  CAS  Google Scholar 

  • Ouellet F, Carpentier E, Cope MJ, Monroy AF, Sarhan F (2001) Regulation of a wheat actindepolymerizing factor during cold acclimation. Plant Physiol 125:360–368Raza H, Robin MA, Fang JK, Avadhani NG (2002) Multiple isoforms of mitochondrial gluathione S-transferases and their differential induction under oxidative stress. Biochem J 366:45-55

    Article  PubMed  CAS  Google Scholar 

  • Pacey-Miller T, Scott K, Ablett E, Tingey S, Ching A, Henry R (2003) Genes associated with the end of dormancy in grapes. Funct Integr Genomics 3:144-152

    Article  PubMed  CAS  Google Scholar 

  • Pandey GK, Cheong YH, Kim KN, Grant JJ, Li L, Hung W, D’Angelo C, Weinl S, Kudla J, Luan S (2004) The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16:1912-1924

    Article  PubMed  CAS  Google Scholar 

  • Pang X, Halaly T, Crane O, Keilin T, Keren A, Ogrodovitch A, Galbraith D, Or E (2007) Involvement of calcium signalling in dormancy release of grape buds. J Exp Bot 58:3249-3262

    Article  PubMed  CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731-734

    Article  PubMed  CAS  Google Scholar 

  • Perez FJ, Lira W (2005) Possible role of catalase in post-dormancy bud break in grapevines.L. J Plant Physiol 162(3):301-308

    Article  PubMed  CAS  Google Scholar 

  • Perez FJ, Rubio S, Ormeno-Nunez J (2007) Is erratic bud-break in grapevines grown in warm winter areas related to disturbances in mitochondrial respiratory capacity and oxidative metabolism. Funct Plant Biol 34(7):624-632

    Article  CAS  Google Scholar 

  • Perez FJ, Vergara S, Rubio S (2008) H2O2 is involved in the dormancy-breaking effect of hydrogen cyanamide in grapevine buds. Plant Growth Regul 55:149-155

    Article  CAS  Google Scholar 

  • Pien S, Wyrzykowska J, Fleming AJ (2001) Novel marker genes for early leaf development indicate spatial regulation of carbohydrate metabolism within the apical meristem. Plant J 25:663-674

    Article  PubMed  CAS  Google Scholar 

  • Prasad TA (1996) Mechanism of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant J 10:1017-1026

    Article  CAS  Google Scholar 

  • Price AH, Taylor A, Ripley SJ, Griffiths A, Trewavas AJ, Knight MR. 1994. Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 6:1301-1310

    Article  PubMed  CAS  Google Scholar 

  • Raza H, Robin MA, Fang JK, Avadhani NG (2004) Multiple isoforms of mitochondrial gluathione S-transferases and their differential induction under oxidative stress. Biochem J. 366:45-55

    Google Scholar 

  • Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signalling in Arabidopsis. Plant Physiol 135:1471-1479

    Article  PubMed  CAS  Google Scholar 

  • Reuber TL, Plotnikova JM, Dewdney JM, Rogers EE, Wood W, Ausubel FM (1998) Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants. Plant J 16:473-485

    Article  PubMed  CAS  Google Scholar 

  • Rey P, Cuine S, Eymery F, Garin J, Court M, Jacquot JP, Rouhier N, Broin M (2005) Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses. Plant J 41:31-42

    Article  PubMed  CAS  Google Scholar 

  • Ricoult C, Echeverria LO, Cliquet JB, Limami AM (2006) Characterization of alanine aminotransferase (AlaAT) multigene family and hypoxic response in young seedlings of the model legume Medicago truncatula. J Exp Bot 57(12):3079-3089

    Article  PubMed  CAS  Google Scholar 

  • Rinne PLH, Kaikuranta PLM, Van der Plas LHW, Van der Schoot C (1999) Dehydrins in coldacclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209:377-388

    Article  PubMed  CAS  Google Scholar 

  • Salzman RA, Bressan RA, Hasegawa PM, Ashworth FN, Bordelon BP (1996) Programmed accumulation of LEA-like proteins during desiccation and cold acclimation of overwintering grape buds. Plant Cell Environ 19:713-720

    Article  CAS  Google Scholar 

  • Saure M (1985) Dormancy release in deciduous fruit trees. Hort Rev 7:239-300

    Google Scholar 

  • Serrato AJ, Cejudo FJ (2003) Type-h thioredoxins accumulate in the nucleus of developing wheat seed tissues suffering oxidative stress. Planta 217:392-399

    Article  PubMed  CAS  Google Scholar 

  • Serrato AJ, Perez-Ruiz JM, Spinola MC, Cejudo FJ (2004) A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J Biol Chem 279:43821-43827

    Article  PubMed  CAS  Google Scholar 

  • Sharma V, Suvarna R, Meganathan R, Hudspeth MES (1992) Menaquinone (Vitamin K2) biosynthesis: nucleotide sequence and expression of the memB gene from Escherichia coli. J Bacteriol 174(15):5057-5062

    PubMed  CAS  Google Scholar 

  • Shim I, Momose Y, Yamamoto A, Kim D, Usui K (2003) Inhibition of catalase activity by oxidative stress and its relationships to salicylic acid accumulation in plants. Plant Growth Regul 39:285-292

    Article  CAS  Google Scholar 

  • Shulman Y, Nir G, Fanberstein L, Lavee S (1983) The effect of cyanamide on the release from dormancy of grapevine buds. Scientia Hort 19:97-104

    Article  CAS  Google Scholar 

  • Siedow JN, Umbach AL (2000) The mitochondrial cyanide-resistant oxidase: structural conservation amid regulatory diversity. Biochim Biophys Acta 1459:432–439. doi: 10.1016/S0005-2728(00)00181-x

    Google Scholar 

  • Subbaiah CC, Sachs MM (2003) Molecular and cellular adaptations of maize to flooding stress. Ann Bot 91:119-127

    Article  PubMed  CAS  Google Scholar 

  • Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891-904

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ, Malho R (1997) Signal perception and transduction: the origin of the phenotype. Plant Cell 9:1181-1195

    Article  PubMed  CAS  Google Scholar 

  • Wang SY, Faust M (1988) Metabolic activities during dormancy and blooming of deciduous fruit trees. Isr J Bot 37:227-243

    Google Scholar 

  • Wang SY, Jiao HJ, Faust M (1991a) Changes in ascorbate, glutathione, and related enzyme acPrasad TA (1996) Mechanism of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant J 10:1017-1026

    Google Scholar 

  • Wang SY, Jiao HJ, Faust M (1991b) Changes in metabolic enzyme activities during thidiazuroninduced lateral budbreak of apple. HortScience 82:231-236

    Google Scholar 

  • Welling A, Moritz T, Palva TE, Junttila O (2002) Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol 129:1633-1641

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Or, E. (2009). Grape Bud Dormancy Release − The Molecular Aspect. In: Roubelakis-Angelakis, K.A. (eds) Grapevine Molecular Physiology & Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2305-6_1

Download citation

Publish with us

Policies and ethics