Skip to main content

Particles of Biomedical Relevance and Their Interactions: A Classical and Quantum Mechanistic Approach to a Theoretical Description

  • Chapter
  • First Online:
Nanoparticles in medicine and environment
  • 1060 Accesses

Abstract

The need for theoretical modeling in biological and medicinal chemistry stems from many reasons. Experimental results are often difficult to interpret and the assignment of the observed signals to certain species is arbitrary in many cases. Theoretical models give direct insight into the electronic, energetic and geometric properties of the chemical systems (molecules and their aggregates), and processes they undergo, These then allow relating the obtained quantities with the measured ones. Direct investigation of materials of biological importance by modern experimental techniques is usually hardly possible, at most time- and funds consuming processes. Computational methods allow investigating a variety of hypothetical structures, where the most promising ones may be selected for further study. In addition, unstable or extremely short-living species, crucial for overall processes but being hardly proven by experiments, may be still investigated by theoretical tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkins PW, Friedman RS (2005) Molecular Quantum Mechanics, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Babarin SS, Uvarova LA (2007) Mathematical modeling of non-equilibrium processes in nano volume the happening as the Casimir’s force acting. Dynamical heterogeneous sys, Moscow 29(1), 11:60–69 (in Russian).

    Google Scholar 

  • Borowski T, de Marothy S, Broclawik E, Schofield C, Siegbahn PEM (2007) Mechanism for cyclization reaction by clavaminic acid synthase. Insights from modeling studies. Biochem-US 46:3682–3691

    Google Scholar 

  • Borowski T, Krol M, Brocławik E, Baranowski TC, Strekowski L, Mokrosz MJ (2000) Application of similarity matrices and genetic neural networks in quantitative structure–activity relationships of 2- or 4-(4-Methylpiperazino)pyrimidines: 5-HT2A receptor antagonists. J Med Chem 43:1901–1909

    Article  CAS  PubMed  Google Scholar 

  • Baerends EJ, Gritsenko OV (1997) A quantum chemical view of density functional theory. J Phys Chem A 101:5383–5403

    Article  CAS  Google Scholar 

  • Broclawik E, Borowski T (2000) Characteristics of the ligand–binding site interaction for a series of arecoline-derived muscarinic agonists: a quantum chemical study. Comp Chem 24:411–420

    Article  CAS  Google Scholar 

  • Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474

    Article  CAS  PubMed  Google Scholar 

  • Carloni P, Rothlisberger U, Parrinello M (2002) The role and perspective of ab initio molecular dynamics in the study of biological systems. Acc Chem Res 35:455–464

    Article  CAS  PubMed  Google Scholar 

  • Carloni P, Alber F (eds) (2003) Quantum medicinal chemistry: methods and principles in medicinal chemistry, vol 17. Wiley-VCH, Weinheim

    Google Scholar 

  • Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105:2253–2278

    Article  CAS  PubMed  Google Scholar 

  • Frampton MW, Stewart JC, Oberdörster G, Morrow PG, Chalupa D, Pietropaoli AP, Frasier LM, Speers DM, Cox C, Huang L, Utell MJ (2006) Inhalation of ultrafine particles alters blood leukocyte expression of adhesion molecules in humans. Environ Health Perspect 114(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864

    Article  Google Scholar 

  • Jensen F (2006) Introduction to computational chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Jones RO, Gunarsson O (1989) The density functional formalism, its applications and prospects. Rev Modern Phys 61:681–746

    Article  Google Scholar 

  • Kettering CF, Shutts LW, Andrews DH (1930) A representation of the dynamic properties of molecules by mechanical models. Phys Rev 36:531–543

    Google Scholar 

  • Koch W, Holthausen MC (2001) A chemist guide to density functional theory. Wiley-VCH, Weinheim

    Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  • Korn K, Krause E (2007) Cell-based high content screening of small-molecule libraries. Curr Opin Chem Biol 11:503–511

    Article  CAS  PubMed  Google Scholar 

  • Levy M (1982) Electron densities in search of Hamiltonians. Phys Rev A 26:1200–1208

    Article  CAS  Google Scholar 

  • Li Z, Kleinstreuer C, Zhang Z (2007) Particle deposition in the human tracheobronchial airways due to transient inspiratory flow patterns. J Aerosol Sci 38:625–644

    Article  Google Scholar 

  • Si-Yan L, Jin-Can C, Qian L, Shen Y, Kang-Cheng Z (2008) QSAR studies and molecular design of phenanthrene-based tylophorine derivatives with anticancer activity. QSAR Comb Sci 27:280–288

    Article  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • Parr RG, Yang W (1994) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  • Patton JS (1996) Mechanisms of macromolecule absorption by the lungs. Adv Drug Deliv Rev 19:3–36

    Article  CAS  Google Scholar 

  • Pauluhn J (2005) Overview of inhalation exposure techniques: strengths and weaknesses. Exp Toxicol Pathol 57:111–128

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Kleinstreuer C, Zhang Z (2007) Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness. J Aerosol Sci 38:398–419

    Article  CAS  Google Scholar 

  • Siegbahn Per EM, Borowski T (2006) Modeling enzymatic reactions involving transition metals. Acc Chem Res 39:729–738

    Article  CAS  PubMed  Google Scholar 

  • Shaik S, Kumar D, de Visser SP, Altun A, Thiel W (2005) Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem Rev 105:2279–2328

    Article  CAS  PubMed  Google Scholar 

  • Shaikh AR, Broclawik E, Tsuboi H, Koyama M, Endou A, Takaba H, Kubo M, Del Carpio CA, Miyamoto A (2007) Oxidation mechanism for the metabolism of (S)-N-[1-(3-morpholin-4-ylphenyl)ethyl]-3-phenylacrylamide on oxyferryl active site in CYP3A4 enzyme: DFT modeling. J Mol Model 13:851–860

    Article  CAS  PubMed  Google Scholar 

  • Shaikh AR, Broclawik E, Ismael M, Tsuboi H, Koyama M, Endou A, Takaba H, Kubo M, Del Carpio CA, Miyamoto A (2006) Hyperconjugation with lone pair of morpholine nitrogen stabilizes transition state for phenyl hydroxylation in CYP3A4 metabolism of (S)-N-[1-(3-morpholin-4-yl phenyl) ethyl]-3-phenylacrylamide. Chem Phys Lett 419:523–527

    Google Scholar 

  • Snyder JA, Madura JD (2008) Interaction of the phospholipid head group with representative quartz and aluminosilicate structures: an ab initio study. J Phys Chem B 112:7095–7103

    Article  CAS  PubMed  Google Scholar 

  • Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96:2841–2888

    Article  CAS  PubMed  Google Scholar 

  • Szabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic structure theory, Dover Publications

    Google Scholar 

  • Uvarova l A (2007) Mathematical modeling of heat transport in aerosol systems with particles of complex geometry. In: European Aerosol Conference. Salzburg, Abstract T12A015

    Google Scholar 

  • Vnukova KV (2008) Mathematical model of physical clusters with using density functional theory. In: Fundamental physical and mathematical problems and modeling for technical and technological systems. Moscow, Yanus –K 11, 51–54 (in Russian)

    Google Scholar 

  • Watanabe Y, Tsuboi H, Koyama M, Kubo M, Del Carpio CA, Broclawik E, Ichiishi E, Kohno M, Miyamoto A (2006) Molecular dynamics study on the ligand recognition by tandem SH3 domains of p47phox, regulating NADPH oxidase activity. Comput Biol Chem 30:303–312

    Article  CAS  PubMed  Google Scholar 

  • Zieder A (2008) Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Adv Drug Deliv Rev 60:580–597

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Broclawik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Broclawik, E., Uvarova, L. (2010). Particles of Biomedical Relevance and Their Interactions: A Classical and Quantum Mechanistic Approach to a Theoretical Description. In: Marijnissen, J., Gradon, L. (eds) Nanoparticles in medicine and environment. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2632-3_9

Download citation

Publish with us

Policies and ethics