Skip to main content

Apomixis: Basics for Non-botanists

  • Chapter
  • First Online:
Lost Sex

Abstract

The evolutionary questions studied in apomictic plants and parthenogenetic animals are often the same. This chapter gives a basic introduction to apomixis in flowering plants, in order to make the botanical apomixis literature more accessible to non-specialists. The focus is on the differences and similarities with parthenogenetic animals. The following topics are briefly discussed: 1. apomixis should not include vegetative reproduction, 2. apomixis is a modification of sexual reproduction 3. different mechanisms of apomixis, 4. the role of endosperm development 5. causes of apomixis 6. male function in apomicts 7. intra-clonal variation 8. the phylogenetic distribution of apomixis and 9. constraints in the evolution of apomixis. At the end of the chapter, suggestions for further reading are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archetti M (2004) Recombination and loss of complementation: a more than two-fold cost for parthenogenesis. J Evol Biol 17: 1084–1097

    Article  PubMed  CAS  Google Scholar 

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC press, Boca Raton

    Google Scholar 

  • Bayer RJ, Chandler GT (2007) Evolution of polyploid agamic complexes: a case study using the Catipes group of Antennaria, including the A. rosea complex (Asteraceae: Gnaphalieae). In: Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel TF (eds) Apomixis: evolution, mechanisms and perspectives. ARG Gantner Verlag KG, Lichtenstein, pp. 317–336

    Google Scholar 

  • Bicknell RA, Lambie SC, Butler RC (2003) Quantification of progeny classes in two facultatively apomictic accessions of Hieracium. Hereditas 138: 11–20

    Article  PubMed  CAS  Google Scholar 

  • Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16: S228–S245

    Article  PubMed  CAS  Google Scholar 

  • Beukeboom LW, Weinzierl RP, Reed KM, Michiels NK (1996) Distribution and origin of chromosomal races in the freshwater planarian Dugesia polychroa (Turbellaria: Tricladida). Hereditas 124: 7–15

    Article  Google Scholar 

  • Calderini O, Chang SB, de Jong H, Bustil A, Paolocci F, Arcioni S, de Vries SC, Abma-Henkens MHC, Klein Lankhorst RH, Donnison IS, Pupilli F (2006) Molecular cytogenetics and DNA sequence analysis of an apomixis-linked BAC in Paspalum simplex reveal a non pericentromere location and partial microcolinearity with rice. Theor Appl Genet 112: 1179–1191

    Article  PubMed  CAS  Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61: 51–94

    Article  Google Scholar 

  • Carman JG (2007) Do duplicate genes cause apomixis? In: Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel TF (eds), Apomixis: evolution, mechanisms and perspectives. ARG Gantner Verlag KG, Lichtenstein, pp. 169–194

    Google Scholar 

  • Catanach AS, Erasmuson SK, Podivinsky E, Jordan BR, Bicknell R (2006) Deletion mapping of genetic regions associated with apomixis in Hieracium. Proc Natl Acad Sci USA 103: 18650–18655

    Article  PubMed  CAS  Google Scholar 

  • Chaboudez P (1994) Patterns of clonal variation in skeleton weed (Chondrilla juncea), an apomictic species. Austr J Bot 42: 283–295

    Article  Google Scholar 

  • Chapman H, Brown J (2001) ‘Thawing’ of ‘frozen’ variation in an adventive, facultatively apomictic, clonal weed. Plant Species Biol 16: 107–118

    Article  Google Scholar 

  • Conner JA, Goel S, Gunawan G, Cordonnier-Pratt MM, Johnson VE, Liang C, Wang H, Pratt LH, Mullet JE, Debarry J, Yang L, Bennetzen JL, Klein PE, Ozias-Akins P (2008) Sequence analysis of bacterial artificial chromosome clones from the apospory-specific genomic region of Pennisetum and Cenchrus. Plant Physiol 147: 1396–411

    Article  PubMed  CAS  Google Scholar 

  • Dujardin M, Hanna WW (1989) Developing apomictic pearl millet – characterization of a BC3 plant. J Genet Breed 43: 145–51

    Google Scholar 

  • Engelstädter J (2008) Constraints on the evolution of asexual reproduction. Bioassays 30: 1138–1150

    Article  CAS  Google Scholar 

  • Ernst A (1918) Bastadierung als Ursache der Apogamie im Pflanzenreich. Fischer, Jena. (Hybridization as cause of apogamy in the plant kingdom)

    Google Scholar 

  • Gehring M, Choi Y, Fischer RL (2004) Imprinting and seed development. Plant Cell 16: S203–S213

    Article  PubMed  CAS  Google Scholar 

  • Haig D, Westoby M (1989) Parent-specific gene expression and the triploid endosperm. Am Nat 134: 147–155

    Article  Google Scholar 

  • Haig D, Westoby M (1991) Genomic imprinting in endosperm: its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixis. Philos Trans R Soc B 333: 1–13

    Article  Google Scholar 

  • Harlan JR, De Wet JMJ (1975) On Ö. Winge and a prayer: the origins of polyploidy. Bot Rev 41: 361–390

    Article  Google Scholar 

  • Hebert PDN (1987) Genotypic characteristics of cyclic parthenogens, their obligately asexual derivatives. In: Stearns SC (ed) The evolution of sex and its consequences. Birkhäuser, Basel, pp. 175–195

    Google Scholar 

  • Holm S, Ghatnekar L, Bengtsson BO (1997) Selfing and outcrossing but no apomixis in two natural populations of diploid Potentilla argentea. J Evol Biol 10: 343–352

    Article  Google Scholar 

  • Hörandl E (2006) The complex causality of geographical parthenogenesis. New Phytol 171: 525–538

    PubMed  Google Scholar 

  • Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel TF (eds) (2007) Apomixis: evolution, mechanisms and perspectives. ARG Gantner Verlag KG, Lichtenstein

    Google Scholar 

  • Huh JH, Bauer MJ, Hsieh T-F, Fischer R (2007) Endosperm gene imprinting and seed development. Curr Opin Genet Dev 17: 480–485

    Article  PubMed  CAS  Google Scholar 

  • Kantama L, Sharbel TF, Schranz ME, Mitchell-Olds T, de Vries S, De Jong JH (2007) Diploid apomicts of the Boechera holboellii complex display large-scale chromosome substitutions and aberrant chromosomes. Proc Natl Acad Sci USA 104: 14026–14031

    Article  PubMed  CAS  Google Scholar 

  • King LM, Schaal BA (1990) Genotypic variation within asexual lineages of Taraxacum officinale. Proc Natl Acad Sci USA 87: 998–1002

    Article  PubMed  CAS  Google Scholar 

  • Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54: 547–574

    Article  PubMed  CAS  Google Scholar 

  • Lively CM (1987) Evidence from a New Zealand snail for the maintenance of sex by parasitism. Nature 328: 519–521

    Article  Google Scholar 

  • LeRoux JJ, Wieczorek AM, Wright MG, Tran CT (2007) Super-genotype: global monoclonality defies the odds of nature. PLoS ONE 2: e590

    Article  CAS  Google Scholar 

  • Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21: 97–108

    Article  PubMed  CAS  Google Scholar 

  • Mes THM, Kuperus P, Kirschner J, Stepanek J, Storchova H (2002) Detection of genetically divergent clone mates in apomictic dandelions. Mol Ecol 11: 253–265

    Article  PubMed  CAS  Google Scholar 

  • Mogie M (1992) The evolution of asexual reproduction in plants. Chapman and Hall, London

    Google Scholar 

  • Moran NA (1992) The evolution of aphid life-cycles. Annu Rev Entomol 37: 321–348

    Article  Google Scholar 

  • Naumova TN (1993) Apomixis in angiosperms. Nucellar and integumentary embryony. CRC Press, Boca Raton

    Google Scholar 

  • Naumova TN, Van der Laak J, Osadtchiy J, Matzk F, Kravtchenko A, Bergervoet J, Ramulu KS, Boutilier K (2001) Reproductive development in apomictic populations of Arabis holboellii (Brassicaceae) Sex Plant Reprod 14: 195–200

    Article  Google Scholar 

  • Nogler GA (1984a) Genetics of apospory in apomictic Ranunculus auricomus. V. Conclusion. Bot Helv 92: 411–423

    Google Scholar 

  • Nogler GA (1984b) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp. 475–518

    Google Scholar 

  • Nogler GA (2006) The lesser-known Mendel: his experiments on Hieracium. Genetics 172: 1–6

    PubMed  Google Scholar 

  • Nogler GA (2007) The discovery of parthogenesis: a long journey to the truth. In: Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel TF (eds) Apomixis: evolution, mechanisms and perspectives. ARG Gantner Verlag KG, Lichtenstein, pp. 25–35

    Google Scholar 

  • Noyes RD, Baker R, Mai B (2007) Mendelian segregation for two-factor apomixis in Erigeron annuus(Asteraceae). Heredity 98: 92–98

    Article  PubMed  CAS  Google Scholar 

  • Noyes RD, Rieseberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics 155: 379–390

    PubMed  CAS  Google Scholar 

  • Ozias-Akins P, Van Dijk PJ (2007) Mendelian genetics of apomixis in plants. Annu Rev Genet 41: 509–537

    Article  PubMed  CAS  Google Scholar 

  • Paland S, Colbourne JK, Lynch M (2005) Evolutionary history of contagious asexuality in Daphnia pulex. Evolution 59: 800–813

    PubMed  CAS  Google Scholar 

  • Paun O, Hörandl E (2006) Evolution of hypervariable microsatellites in apomictic polyploid lineages of Ranunculus carpaticola: directional bias at dinucleotide loci. Genetics 174: 387–398

    Article  PubMed  CAS  Google Scholar 

  • Pichot C, El Maātaoui M, Raddi S, Raddi P (2001) Surrogate mother for endangered Cupressus. Nature 412: 39

    Article  PubMed  CAS  Google Scholar 

  • Pringle P (2007) Day of the dandelion. Simon and Schuster, New York

    Google Scholar 

  • Richards AJ (2003) Apomixis in flowering plants: an overview. Philos Trans R Soc B Biol Sci 358: 1085–1093

    Article  CAS  Google Scholar 

  • Roetman E, Den Nijs JCM, Sterk AA (1988) Distribution and habitat range of diploid, sexual dandelions (Taraxacum section Vulgaria), a Central European flora element in the Netherlands. Acta Bot Neerl 37: 81–94

    Google Scholar 

  • Rutishauser A (1948) Pseudogamie und Polymorphie in der Gattung Potentilla. Julius Klaus Stiftung für Vererb Forsch 23: 267–424

    Google Scholar 

  • Sanderson M, Doyle JJA (2001) Sources of error and confidence intervals in estimating the age of angiosperms from rbcL and 18S rDNA data. Am J Bot 88: 1499–1516

    Article  CAS  Google Scholar 

  • Savidan Y (1980) Chromosomal and embryological analyses in sexual X apomictic hybrids of Panicum maximum Jacq. Theor Appl Genet 57: 153–156

    Article  Google Scholar 

  • Savidan Y (2000) Apomixis: genetics and breeding. Plant Breed Rev 18: 13–85

    CAS  Google Scholar 

  • Savidan Y, Carman JG, Dresselhaus T (eds) (2001) The flowering of apomixis; from mechanisms to genetic engineering. Mexico, DF: Cimmyt, IRD European Commission DG VI (FAIR)

    Google Scholar 

  • Schultz RJ (1967) Gynogenesis and triploidy in the viviparous fish Poeciliopsis. Science 157: 1564–1567

    Article  PubMed  CAS  Google Scholar 

  • Spillane C, Curtis MD, Grossniklaus U. (2004) Apomixis technology development – virgin births in farmers’ fields? Nat Biotechnol 22: 687–691

    Article  PubMed  CAS  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Van der Hulst RGM, Mes THM, Den Nijs JCM, Bachmann K (2000) Amplified fragment length polymorphism (AFLP) markers reveal that population structure of triploid dandelions (Taraxacum officinale) exhibits both clonality and recombination. Mol Ecol 9: 1–8

    Article  Google Scholar 

  • Van Dijk PJ (2003) Ecological and evolutionary opportunities of apomixis: insights from Taraxacumand Chondrilla. Philos Trans R Soc B Biol Sci 358: 1113–1121

    Article  CAS  Google Scholar 

  • Van Dijk PJ, Vijverberg K (2005) The significance of apomixis in the evolution of the angiosperms: a reappraisal. Regnum Vegetabile 143. Bakker FT, Chatrou LW, Gravendeel B and Pelser PB (eds) Plant species-level systematics: new perspectives on pattern and process. Koeltz Scientific Books, Koeningstein, pp. 101–116

    Google Scholar 

  • Whitton J, Sears CJ, Baack EJ, Otto SP (2008) The dynamic nature of apomixis in the angiosperms. Int J Plant Sci 169: 169–182

    Article  Google Scholar 

  • Wu W, Zheng YL, Chen L, Wei YM, Yan ZH (2005) Genetic diversity among the germplasm resources of the genus Houttuynia Thunb. in China based on RAMP markers. Gen Res Crop Evol 52: 473–482

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Van Dijk .

Editor information

Editors and Affiliations

Glossary

Adventitious embryony:

The formation of somatic next to sexual embryos.

Agamospermy:

asexual reproduction by seed

Apomixis (in plants):

asexual reproduction through seeds

Apospory:

In addition to the normal reduced megagametophyte (n), a second but unreduced (2n) megagametophyte is formed from a non-spore cell (aposporous initial).

Autogamy:

Also called selfing. The fusion of egg cells and pollen grains produced by the same individual.

Autonomous apomixis:

The evolution of autonomous endosperm development in some apomictic plants.

Diplospory:

a normal reductional meiosis is replaced by a non-reductional division. Two unreduced megaspores (2n) are produced, of which one degenerates and the other develops into an unreduced gametophyte with an unreduced egg cell.

Facultative apomixis:

the production of a mixture of different progeny types in apomictic plants which is possible because apomeiosis and parthenogenesis can be uncoupled.

Gametophytic apomixis:

can consist of diplospory and apospory and is strongly correlated with polyploidy

Nucellar embryony:
Pseudogamy, pseudogamous apomixis:

the endosperm develops only after fertilization of the central cell.

Sporophytic apomixis:

Somatic embryos are formed within the sporophytic tissue that surrounds the gametophyte. These cells do not enter a gametophytic phase but remain sporophytically and produce an embryo directly (somatic embryo).

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Van Dijk, P. (2009). Apomixis: Basics for Non-botanists. In: Schön, I., Martens, K., Dijk, P. (eds) Lost Sex. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2770-2_3

Download citation

Publish with us

Policies and ethics