Skip to main content

Does leaf-level nutrient-use efficiency explain Nothofagus-dominance of some tropical rain forests in New Caledonia?

  • Chapter
Forest Ecology

Abstract

Tropical rain forests generally have a complex structure and a high diversity of species in their canopy, but in some rain forests the upper canopy is dominated by a single species. The factors controlling this dominance are uncertain. In New Caledonia, Nothofagus species dominate the upper canopy of some rain forests on ultramafic soils. Here we investigate whether leaf-level nutrient-use efficiency (NUE) could explain dominance by Nothofagus. We found no evidence of a competitive advantage in Nothofagus in terms of leaf-level NUE: Nothofagus species did not have lower leaf macronutrient concentrations, nor did they resorb more nutrients than co-occurring species on average. They did, however, have lower foliar Ni concentrations on average. Leaf decay rate across all species in a glasshouse-based trial correlated positively with foliar P and negatively with cell wall content, lignin:P, C:P, lignin:N, leaf toughness and tannin activity. Multivariate analysis suggested that total cell wall concentration exerted the strongest independent effect on variation among species in decomposition rate. Slow decomposition of Nothofagus leaf litter may facilitate continued dominance of the upper canopy by suppressing establishment and growth of co-occurring species or by promoting disturbance through fire, since disturbance has been suggested as necessary for regeneration and maintenance of dominance by Nothofagus species. However, the biological mechanisms allowing Nothofagus to achieve initial dominance of these post-disturbance forests are uncertain, and may still include plant-level NUE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608. doi:10.2307/2261481

    Article  Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449. doi:10.2307/3546886

    Article  Google Scholar 

  • Aerts R (2002) The roles of various types of mycorrhizal fungi in nutrient cycling and plant competition. In: van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology. Springer-Verlag, Berlin

    Google Scholar 

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67. doi:10.1016/S0065-2504(08)60016-1

    Article  CAS  Google Scholar 

  • Asquith TN, Butler LG (1985) Use of dye-labeled protein as spectrophotometric assay for protein precipitants such as tannin. J Chem Ecol 11:1535–1544. doi:10.1007/BF01012199

    Article  CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Baker AJM, Walker PL (1989) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, FL

    Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57. doi:10.1016/0375-6742(77)90074-7

    Article  CAS  Google Scholar 

  • Chapin FS (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260. doi:10.1146/annurev.es.11.110180.001313

    Article  CAS  Google Scholar 

  • Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol 31:239–298. doi:10.1146/annurev.pp.31.060180.001323

    Article  CAS  Google Scholar 

  • Connell JH, Lowman MD (1989) Low-diversity tropical rain forests: some possible mechanisms for their existence. Am Nat 134:88–119. doi:10.1086/284967

    Article  Google Scholar 

  • Cork SJ, Krockenberger AK (1991) Methods and pitfalls of extracting condensed tannins and other phenolics from plants: insights from investigations on Eucalyptus leaves. J Chem Ecol 17:123–134. doi:10.1007/BF00994426

    Article  CAS  Google Scholar 

  • Cornelissen JHC (1996) An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84:573–582. doi:10.2307/2261479

    Article  Google Scholar 

  • Cornelissen JHC, Pérez-Harguindeguy N, Diaz S, Grime JP, Marzano B, Cabido M et al (1999) Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol 143:191–200. doi:10.1046/j.1469-8137.1999.00430.x

    Article  Google Scholar 

  • Diehl P, Mazzarino MJ, Funes F, Fontenla S, Gobbi M, Ferrari J (2003) Nutrient conservation strategies in native Andean-Patagonian forests. J Veg Sci 14:63–70. doi:10.1658/1100-9233(2003)014[0063:NCSINA]2.0.CO;2

    Article  Google Scholar 

  • Enright NJ, Rigg L, Jaffré T (2001) Environmental controls on species composition along a (maquis) shrubland to forest gradient on ultramafics at Mont Do, New Caledonia. S Afr J Sci 97:573–580

    CAS  Google Scholar 

  • Erland S, Taylor AFS (2002) Diversity of ecto-mycorrhizal fungal communities in relation to the abiotic environment. In: van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology. Springer-Verlag, Berlin

    Google Scholar 

  • Facelli JM, Pickett STA (1991) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–32. doi:10.1007/BF02858763

    Article  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246. doi:10.1111/j.0030-1299.2004.12738.x

    Article  Google Scholar 

  • Graham HD (1992) Stabilization of Prussian Blue color in the determination of polyphenols. J Agric Food Chem 40:801–805. doi:10.1021/jf00017a018

    Article  CAS  Google Scholar 

  • Grubb PJ (1977) Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu Rev Ecol Syst 8:83–107. doi:10.1146/annurev.es.08.110177.000503

    Article  CAS  Google Scholar 

  • Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266. doi:10.1111/j.1469-8137.2004.01192.x

    Article  Google Scholar 

  • Hammel KE (1997) Fungal degradation of lignin. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, UK

    Google Scholar 

  • Hart TB, Hart JA, Murphy PG (1989) Monodominant and species-rich forests of the humid tropics: causes for their co-occurrence. Am Nat 133:613–633. doi:10.1086/284941

    Article  Google Scholar 

  • Heal OW, Anderson JM, Swift MJ (1997) Plant litter quality and decomposition: an historical overview. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, UK

    Google Scholar 

  • Hobbie SE, Vitousek PM (2000) Nutrient limitation of decomposition in Hawaiian forests. Ecology 81:1867–1877

    Article  Google Scholar 

  • Hoorens B, Aerts R, Stroetenga M (2003) Does initial litter chemistry explain litter mixture effects on decomposition? Oecologia 137:578–586. doi:10.1007/s00442-003-1365-6

    Article  PubMed  Google Scholar 

  • Jaffré T (1980) Étude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle Calédonie. Collection Travaux et Documents de l’ORSTOM no. 124, ORSTOM, Paris

    Google Scholar 

  • Jaffré T (1992) Floristic and ecological diversity of the vegetation on ultramafic rocks in New Caledonia. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept Ltd, Andover, UK

    Google Scholar 

  • Jaffré T, Morat P, Veillon J-M, Rigault F, Dagostini G (2004) Composition et caractéristiques de la flore indigène de Nouvelle-Calédonie. Nouméa. 2nd ed. IRD Documents Scientifiques et Techniques II 4, pp 121

    Google Scholar 

  • Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727. doi:10.2307/2265777

    Article  Google Scholar 

  • Kraus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems—a review. Plant Soil 256:41–66. doi:10.1023/A:1026206511084

    Article  CAS  Google Scholar 

  • La Caro F, Rudd RL (1985) Leaf litter disappearance rates in Puerto Rican montane rain forest. Biotropica 17:269–276. doi:10.2307/2388589

    Article  Google Scholar 

  • Loranger G, Ponge J-F, Imbert D, Lavelle P (2002) Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality. Biol Fertil Soils 35:247–252. doi:10.1007/s00374-002-0467-3

    Article  CAS  Google Scholar 

  • Mac Nally R, Walsh CJ (2004) Hierarchical partitioning public-domain software. Biodivers Conserv 13:659–660. doi:10.1023/B:BIOC.0000009515.11717.0b

    Article  Google Scholar 

  • McCoy S (1991) Edaphic controls influencing the distribution of Nothofagus aequilateralis on ultrabasic soils at the Col de Mouirange, New Caledonia. Honours Dissertation, Australian National University, Australia

    Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472. doi:10.2307/1936576

    Article  CAS  Google Scholar 

  • Meharg AA, Cairney JWG (2000) Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res 30:69–112. doi:10.1016/S0065-2504(08)60017-3

    Article  CAS  Google Scholar 

  • Mesquita RCG, Workman SW, Neely CL (1998) Slow litter decomposition in a Cecropia-dominated secondary forest of central Amazonia. Soil Biol Biochem 30:167–175. doi:10.1016/S0038-0717(97)00105-3

    Article  Google Scholar 

  • Milton Y, Kaspari M (2007) Bottom-up and top-down regulation of decomposition in a tropical forest. Oecologia 153:163–172. doi:10.1007/s00442-007-0710-6

    Article  PubMed  Google Scholar 

  • Nascimento MT, Barbosa RI, Villela DM, Proctor J (2007) Above-ground biomass changes over an 11-year period in an Amazonian monodominant forest and two other lowland forests. Plant Ecol 192:181–191. doi:10.1007/s11258-007-9303-z

    Article  Google Scholar 

  • Newbery DM, Alexander IJ, Rother JA (1997) Phosphorus dynamics in a lowland African rain forest: the influence of ectomycorrhizal trees. Ecol Monogr 67:367–409

    Google Scholar 

  • Northup RR, Dahlgren RA, McColl JG (1998) Polyphenols as regulators of plant-litter-soil interactions in northern California’s pygmy forest: a positive feedback? Biogeochemistry 42:189–220. doi:10.1023/A:1005991908504

    Article  CAS  Google Scholar 

  • Ovington JD, Olson JS (1970) Biomass and chemical content of El Verde lower montane rain forest plants. In: Odum HT, Pigeon RF (eds) A tropical rain forest. U.S. Atomic Energy Commission, Oak Ridge

    Google Scholar 

  • Perrier N, Amir H, Colin F (2006) Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo massif, New Caledonia. Mycorrhiza 16:449–458. doi:10.1007/s00572-006-0057-6

    Article  PubMed  Google Scholar 

  • Plummer A (2007) Decomposition rates of leaves on two contrasting soil types in a tropical rainforest—are the factors that control herbivory persistent and effective in reducing rates of decomposition? Honours Dissertation, Monash University

    Google Scholar 

  • Price ML, Butler LG (1977) Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain. J Agric Food Chem 25:1268–1273. doi:10.1021/jf60214a034

    Article  CAS  Google Scholar 

  • Proctor J, Woodell SRJ (1975) The ecology of serpentine soils. Adv Ecol Res 9:255–366. doi:10.1016/S0065-2504(08)60291-3

    Article  Google Scholar 

  • Proctor J, Phillipps C, Duff GK, Heaney A, Robertson FM (1989) Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia. II. Some forest processes. J Ecol 77:317–331. doi:10.2307/2260752

    Article  CAS  Google Scholar 

  • R Development Core Team (2004) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org. Accessed 3–6 August 2007

  • Read J, Hope GS (1996) Ecology of Nothofagus forests of New Guinea and New Caledonia. In: Veblen TT, Hill RS, Read J (eds) The ecology and biogeography of Nothofagus forests. University of Yale Press, New Haven

    Google Scholar 

  • Read J, Sanson GD (2003) Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytol 160:81–99. doi:10.1046/j.1469-8137.2003.00855.x

    Article  Google Scholar 

  • Read J, Jaffré T, Godrie E, Hope GS, Veillon J-M (2000) Structural and floristic characteristics of some monodominant and adjacent mixed rain forest in New Caledonia. J Biogeogr 27:233–250. doi:10.1046/j.1365-2699.2000.00407.x

    Article  Google Scholar 

  • Read J, Ferris JM, Jaffré T (2002) Foliar mineral content of Nothofagus species on ultramafic soils in New Caledonia and non-ultramafic soils in Papua New Guinea. Aust J Bot 50:607–617. doi:10.1071/BT01091

    Article  CAS  Google Scholar 

  • Read J, Jaffré T, Ferris JM, McCoy S, Hope GS (2006) Does soil determine the boundaries of monodominant rain forest with adjacent mixed rain forest and maquis on ultramafic soils in New Caledonia? J Biogeogr 33:1055–1065. doi:10.1111/j.1365-2699.2006.01470.x

    Article  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101:11001–11006. doi:10.1073/pnas.0403588101

    Article  PubMed  CAS  Google Scholar 

  • Richardson SJ, Peltzer DA, Allen RB, McGlone MS (2005) Resorption proficiency along a chronosequence: responses among communities and within species. Ecology 86:20–25. doi:10.1890/04-0524

    Article  Google Scholar 

  • Santiago LS (2007) Extending the leaf economics spectrum to decomposition: evidence from a tropical forest. Ecology 88:1126–1131. doi:10.1890/06-1841

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London

    Google Scholar 

  • Stark N (1970) The nutrient content of plants and soils from Brazil and Surinam. Biotropica 2:51–60. doi:10.2307/2989789

    Article  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, Oxford

    Google Scholar 

  • Tanner EVJ (1977) Four montane rain forests of Jamaica: a quantitative characterization of the floristics, the soils and the foliar mineral levels, and a discussion of the interrelations. J Ecol 65:883–918. doi:10.2307/2259385

    Article  CAS  Google Scholar 

  • Thompson J, Proctor J, Viana V, Milliken W, Ratter JA, Scott DA (1992) Ecological studies on a lowland evergreen rain forest on Maraca Island, Roraima, Brazil. I. Physical environment, forest structure and leaf chemistry. J Ecol 80:689–703. doi:10.2307/2260860

    Article  Google Scholar 

  • Torti SD, Coley PD, Kursar TA (2001) Causes and consequences of monodominance in tropical lowland forests. Am Nat 157:141–153. doi:10.1086/318629

    Article  PubMed  CAS  Google Scholar 

  • Van Soest PJ (1994) Nutritional ecology of the ruminant, 2nd edn. Comstock Publications, Ithaca, New York

    Google Scholar 

  • Villela DM, Proctor J (1999) Litterfall mass, chemistry, and nutrient retranslocation in a monodominant forest on Maracá Island, Roraima, Brazil. Biotropica 31:198–211

    Article  Google Scholar 

  • Villela DM, Proctor J (2002) Leaf litter decomposition and monodominance in the Peltogyne forest of Maracá Island, Brazil. Biotropica 34:334–347

    Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–298. doi:10.2307/1939481

    Article  CAS  Google Scholar 

  • Vitousek PM (1998) Foliar and litter nutrients, nutrient resorption, and decomposition in Hawaiian Metrosideros polymorpha. Ecosystems 1:401–407. doi:10.1007/s100219900033

    Article  CAS  Google Scholar 

  • Walsh C, Mac Nally R (2007) The hier.part package. http://cran.r-project.org/doc/packages/hier.part.pdf

  • Wilkinson DM, Dickinson NM (1995) Metal resistance in trees: the role of mycorrhizae. Oikos 72:298–300. doi:10.2307/3546233

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Read .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chatain, A., Read, J., Jaffré, T. (2008). Does leaf-level nutrient-use efficiency explain Nothofagus-dominance of some tropical rain forests in New Caledonia?. In: Van der Valk, A.G. (eds) Forest Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2795-5_5

Download citation

Publish with us

Policies and ethics