Skip to main content

Oxidation of Membrane Lipids and Functions of Oxylipins

  • Chapter
Lipids in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 30))

Summary

The glycerolipids that make up the thylakoid bilayer contain exceptionally high levels of polyunsaturated fatty acids. These fatty acids are very susceptible to oxidation, and the activated oxygen species generated as biproducts of photosynthesis will accelerate the initiation of peroxidation. Fortunately, the chloroplast is well protected from damage caused by fatty acid oxidation (as well as other oxidation reactions) by several antioxi-dant systems. Despite these systems, chemical peroxidation does occur — particularly after tissue damage from wounding or pathogen infection. The oxylipin compounds produced, including reactive electrophile species (RES), contribute to the induction of defense-gene expression and also act directly in defense against insects and microbes. Plants have evolved enzymatic pathways to facilitate the synthesis of particular oxylipin products, including several that are not synthesized by the chemical peroxidation reactions. The best known of these is the defense hormone, jasmonate, which acts through a specific signaling pathway to regulate plant responses. Jasmonate has additional roles in plant development and metabolic regulation. The recent discovery of a family of repressor proteins, the JAZ proteins that are targets of jasmonate signaling provide new tools to understand the mechanism of jasmonate action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

JA:

Jasmonate

JA-Ile:

Jasmonoyl-isoleucine

OPC-8:0:

3-Oxo-2(2′-pentenyl)cyclopentane-1-octanoic acid

OPDA:

12-Oxo-phytodienoic acid

RES:

Reactive electrophile species

References

  • Alméras E, Stolz S, Vollenweider S, Reymond P, Mène-Saffrané L and Farmer EE (2003) Reactive electrophile species activate defense gene expression in Arabidopsis. Plant J 34: 205–216

    Article  PubMed  Google Scholar 

  • Andersson MX, Hamberg M, Kourtchenki O, Brunnström Å, McPhail KL, Gerwick WH, Göbel C, Feussner I and Ellerström M (2006) Oxylipin profiling of the hypersensitive response in Arabidopsis thaliana. Formation of a novel oxo-phytodienoic acid-containing galactolipid, Arabidopside E. J Biol Chem 281: 31528–31537

    CAS  Google Scholar 

  • Balbi V and Devoto A (2008) Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177: 301–318

    Article  PubMed  CAS  Google Scholar 

  • Bartel B (1997) Auxin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 48: 51–66

    Article  PubMed  CAS  Google Scholar 

  • Bate NJ and Rothstein SJ (1998) C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J 16: 561–569

    Article  PubMed  CAS  Google Scholar 

  • Bishop P, Pearce G, Bryant JE and Ryan CA (1984) Isolation and characterization of the proteinase inhibitor inducing factor from tomato leaves: identity and activity of poly- and oligogalacturonide fragments. J Biol Chem 259: 13172–13177

    PubMed  CAS  Google Scholar 

  • Blée E (1998) Phytooxylipins and plant defense reactions. Prog Lipid Res 37: 33–72

    Article  PubMed  Google Scholar 

  • Blée E (2002) Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7: 315–321

    Article  PubMed  Google Scholar 

  • Broekaert WF, Delauré SL, De Bolle MF and Cammue BP (2006) The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44: 393–416

    Article  PubMed  CAS  Google Scholar 

  • Browse J (2005) Jasmonate: An oxylipin signal with many roles in plants. In: Litwack G (ed) Vitamins and Hormones. AP-Elsevier, New York, pp. 431–456

    Google Scholar 

  • Browse J and Howe GA (2008) Update on jasmonate signaling: new weapons and a rapid response against insect attack. Plant Physiol 146: 832–838

    Article  PubMed  CAS  Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Microl JL and Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666–671

    Article  PubMed  CAS  Google Scholar 

  • Conconi A, Smerdon MJ, Howe GA and Ryan CA (1996) The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Nature 383: 763–764

    Article  Google Scholar 

  • Constabel CP, Bergey DR and Ryan CA (1995) Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci USA 92: 407–411

    Article  PubMed  CAS  Google Scholar 

  • Devoto A and Turner JG (2003) Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann Bot (London) 92: 329–337

    Article  CAS  Google Scholar 

  • Devoto A, Ellis C, Magusin A, Chang HS, Chilcott C, Zhu T and Turner JG (2005) Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol Biol 58: 497–513

    Article  PubMed  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S and Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435: 441–445

    Article  PubMed  CAS  Google Scholar 

  • Eastmond PJ and Graham IA (2000) The multifunctional protein AtMFP2 is co-ordinately expressed with other genes of fatty acid beta-oxidation during seed germination in Arabidopsis thaliana (L.) Heynh. Biochem Soc Trans 28: 95–99

    Article  PubMed  CAS  Google Scholar 

  • Eastmond PJ, Hooks MA, Williams D, Lange P, Bechtold N, Sarrobert C, Nussaume L and Graham IA (2000) Promoter trapping of a novel medium-chain acyl-CoA oxidase which is induced transcriptionally during Arabi-dopsis seed germination. J Biol Chem 275: 34375–34381

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE and Davoine C (2007) Reactive electrophile species. Curr Opin Plant Biol 10: 380–386

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE and Ryan CA (1990) Interplant communication — airborne methyl jasmonate induces synthesis of protei-nase inhibitors in plant leaves. Proc Natl Acad Sci USA 87: 7713–7716

    Article  PubMed  CAS  Google Scholar 

  • Felix G and Boller T (1995) Systemin induces rapid ion fluxes and ethylene biosynthesis in Lycopersicon peruvi-anum cells. Plant J 7: 381–389

    Article  CAS  Google Scholar 

  • Footitt S, Dietrich D, Fait A, Fernie AR, Holdsworth MJ, Baker A and Theodoulou FL (2007) The COMATOSE ATP-binding cassette transporter is required for full fertility in Arabidopsis. Plant Physiol 144: 1467–1480

    Article  PubMed  CAS  Google Scholar 

  • Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer E and Wolfender JL (2008) Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem 283: 16400–16407

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43: 205–227

    Article  PubMed  CAS  Google Scholar 

  • Goda H, Sasaki F, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki AK, Kiba T, Takatsuto S, Fujioka S, Asami T, Nakano T, Kato H, Mizuno T, Sakakibara H, Yamaguchi S, Nambara F, Kamiya Y, Takahashi H, Hirai MY, Sakurai T, Shinozaki K, Saito K, Yoshida S and Shimada Y (2008) The AtGenExpress hormone- and chemical-treatment data set: experimental design, data evaluation, model data analysis, and data access. Plant J 55: 526–542

    Article  PubMed  CAS  Google Scholar 

  • Grechkin AN (2002) Hydroperoxide lyase and divinyl ether syn-thase. Prostaglandins Other Lipid Mediat 68–69: 457–470

    Article  PubMed  Google Scholar 

  • Hahn MG, Darvill AG and Albersheim P (1981) Host— pathogen interactions: XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans. Plant Physiol 68: 1161–1169

    Article  PubMed  CAS  Google Scholar 

  • Havaux M, Eymery F, Portirova S, Rey P and Dörmann P (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17: 3451–3469

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, de Bellis L, Ciurli A, Kondo M, Hayashi M and Nishimura M (1999) A novel acyl-CoA oxidase that can oxidize short-chain acyl-CoA in plant peroxisomes. J Biol Chem 274: 12715–12721

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Toriyama K, Kondo M and Nishimura M (1998) 2,4-Dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid β-oxi-dation. Plant Cell 10: 183–195

    PubMed  CAS  Google Scholar 

  • Howe GA and Browse J (2007) Jasmonate Synthesis and Action in Higher Plants. Encyclopedia of Life Sciences. Wiley, Chichester. Available at http://www.els. net/[DOI:10.1002/9780470015902.a0020138]

    Google Scholar 

  • Howe GA and Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59: 41–66

    Article  PubMed  CAS  Google Scholar 

  • Howe GA, Lightner J, Browse J and Ryan CA (1996) An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8: 2067–2077

    PubMed  CAS  Google Scholar 

  • Hyun Y, Choi S, Hwang H-J, Yu J, Nam S-J, Ko J, Park J-Y, Seo YS, Kim EY, Ryu SB, Kim WT, Lee Y-H, Kang H and Lee I (2008) Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Develop Cell 14: 183–192

    Article  CAS  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I and Okada K (2001) The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13: 2191–2209

    PubMed  CAS  Google Scholar 

  • Jamieson GR and Reid EH (1971) Occurrence of hexadeca-7,10,13-trienoic acid in leaf lipids of angiosperms. Phyto-chemistry 10: 1837–1841

    CAS  Google Scholar 

  • Kang JH, Wang L, Giri A and Baldwin IT (2006) Silencing threonine deaminase and JAR4 in Nicotiana attenu-ata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. Plant Cell 18: 3303–3320

    Article  PubMed  CAS  Google Scholar 

  • Katsir L, Schilmiller AL, Staswick PE, He SY and Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 105: 7100–7105

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Halitschke R and Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305: 665–668

    Article  PubMed  CAS  Google Scholar 

  • Koo AJ, Chung HS, Kobayashi Y and Howe GA (2006) Identification of a peroxisomal acyl-activating enzyme involved in the biosynthesis of jasmonic acid in Arabi-dopsis. J Biol Chem 281: 33511–33520

    Article  PubMed  CAS  Google Scholar 

  • Kunkel BN and Brooks DM (2002) Crosstalk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5: 325–331

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Suh S, Kim S, Crain RC, Kwak JM, Nam H-G and Lee Y (1997) Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Plant J 12: 547–556

    Article  CAS  Google Scholar 

  • Li C, Liu G, Xu C, Lee GI, Bauer P, Ling HQ, Ganal MW and Howe GA (2003) The tomato suppressor of prosys-temin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15: 1646–1661

    Article  PubMed  CAS  Google Scholar 

  • Li L, Li C, Lee GI and Howe GA (2002) Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci USA 99: 6416– 6421

    Article  PubMed  CAS  Google Scholar 

  • Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E and Howe GA (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16: 126–143

    Article  PubMed  CAS  Google Scholar 

  • Liechti R and Farmer EE (2002) The jasmonate pathway. Science 296: 1649–1650

    Article  PubMed  CAS  Google Scholar 

  • Loeffler C, Berger S, Guy A, Durand T, Bringmann G, Dreyer M, von Rad U, Durner J and Mueller MJ (2005) B1-phytoprostanes trigger plant defense and detoxification responses. Plant Physiol 137: 328–340

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Piqueras R, Sánchez-Serrano JJ and Solano R (2002) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15: 165–178

    Google Scholar 

  • Lorenzo O, Chico JM and Sánchez-Serrano JJ (2004) JAS-MONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16: 1938–1950

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Sage TL, Isaac G, Welti R and DellaPenna D (2008) Tocopherols modulate extraplastidic polyunsatu-rated fatty acid metabolism in Arabidopsis at low temperature. Plant Cell 20: 452–470

    Article  PubMed  CAS  Google Scholar 

  • Mandaokar A, Thines B, Shin B, Lange BM, Choi G, Koo YJ, Yoo YJ, Choi YD, Choi G and Browse J (2006) Tran-scriptional regulators of stamen development in Arabi-dopsis identified by transcriptional profiling. Plant J 46: 984–1008

    Article  PubMed  CAS  Google Scholar 

  • Marnett LJ (2002) Oxy radicals, lipid peroxidation and DNA damage. Toxicology 181–182: 219–222

    Article  PubMed  Google Scholar 

  • Mason HS and Mullet JE (1990) Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. Plant Cell 2: 569–579

    PubMed  CAS  Google Scholar 

  • Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9: 274–280

    Article  PubMed  CAS  Google Scholar 

  • McConn M and Browse J (1996) The critical requirement for linolenic acid is for pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8: 403–416

    PubMed  CAS  Google Scholar 

  • McConn M and Browse J (1998) Polyunsaturated membranes are required for photosynthetic competence in a mutant of Arabidopsis. Plant J 15: 521–530

    Article  PubMed  CAS  Google Scholar 

  • McConn M, Creelman RA, Bell E, Mullet JE and Browse J (1997) Jasmonate is essential for insect defense in Arabi-dopsis. Proc Natl Acad Sci USA 94: 5473–5477

    Article  PubMed  CAS  Google Scholar 

  • McGurl B, Pearce G, Orozco-Cárdenas M and Ryan CA (1992) Structure, expression and antisense inhibition of the systemin precursor gene. Science 255: 1570–1573

    Article  PubMed  CAS  Google Scholar 

  • Melotto M, Mecey C, Niu Y, Chung HS, Katsir L, Yao J, Zeng W, Thines B, Staswick P, Browse J, Howe G and He SY (2008) A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. Plant J 55: 979–988

    Article  PubMed  CAS  Google Scholar 

  • Mène-Saffrané L, Davoine C, Stolz S, Majcherczyk P and Farmer EE (2007) Genetic removal of tri-unsaturated fatty acids suppresses developmental and molecular phe-notypes of an Arabidopsis tocopherol-deficient mutant. J Biol Chem 282: 35749–35756

    Article  PubMed  CAS  Google Scholar 

  • Menke FLH, Champion A, Kijne JW and Memlink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18: 4455–4463

    Article  PubMed  CAS  Google Scholar 

  • Millar AH and Leaver CJ (2000) The cytotoxic lipid peroxi-dation product, 4-hydroxy-2-nonenal, specifically inhibits decarboxylating dehydrogenases in the matrix of plant mitochondria. FEBS Lett 481: 117–121

    Article  PubMed  CAS  Google Scholar 

  • Moyen C and Johannes E (1996) Systemin transiently depolarizes the tomato mesophyll cell membrane and antagonizes fusicoccin-induced extracellular acidification of mesophyll tissue. Plant Cell Environ 19: 464–470

    Article  CAS  Google Scholar 

  • Mueller MJ (2004) Archetype signals in plants: the phyto-prostanes. Curr Opin Plant Biol 7: 441–448

    Article  PubMed  CAS  Google Scholar 

  • Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller MJ and Berger S (2008) General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20: 768–785

    Article  PubMed  CAS  Google Scholar 

  • Nárvaez-Vásquez J, Florin-Christensen J and Ryan CA (1999) Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves. Plant Cell 11: 2249–2260

    PubMed  Google Scholar 

  • Niyogi KK (1999) Photoprotection revised: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50: 333–359

    Article  PubMed  CAS  Google Scholar 

  • Noordermeer MA, Veldink GA and Vliegenthart JFG (2001) Fatty acid hydroperoxide lyase: a plant cytochrome P450 enzyme involved in wound healing and pest resistance. ChemBioChem 2: 494–504

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA and Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31: 1–12

    Article  PubMed  Google Scholar 

  • Pearce G, Strydom D, Johnson S and Ryan CA (1991) A polypeptide from tomato leaves activates the expression of proteinase inhibitor proteins. Science 253: 895–897

    Article  PubMed  CAS  Google Scholar 

  • Rao MV and Davis KR (2001) The physiology of ozone induced cell death. Planta 213: 682–690

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C and Parthier B (1993) Methyl jasmonate-regulated translation of nuclear-encoded chloroplast proteins in barley (Hordeum vulgare L. cv. salome). J Biol Chem 268: 10606–10611

    PubMed  CAS  Google Scholar 

  • Reymond P, Weber H, Damond M and Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12: 707–719

    PubMed  CAS  Google Scholar 

  • Ribot C, Zimmerli C, Farmer EE, Reymond P and Poirier Y (2008) Induction of the Arabidopsis PHO1;H10 gene by 12-oxo-phytodienoic acid but not jasmonic acid via a CORONATINE INSENSITIVE1-dependent pathway. Plant Physiol 147: 696–706

    Article  PubMed  CAS  Google Scholar 

  • Richmond TA and Bleecker AB (1999) A defect in β-oxida-tion causes abnormal inflorescence development in Ara-bidopsis. Plant Cell 11: 1911–1923

    PubMed  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C-Z, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK and Yu G-L (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Routaboul J-M, Fischer S and Browse J (2000) Trienoic fatty acids are required to maintain chloroplast function at low temperatures. Plant Physiol 124: 1697–1705

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477: 112–121

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA and Pearce G (1998) Systemin: a polypeptide signal for plant defensive genes. Annu Rev Cell Dev Biol 14: 1–17

    Article  PubMed  CAS  Google Scholar 

  • Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP, Weiler EW and Goldberg RB (2000) The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12: 1041–1062

    PubMed  CAS  Google Scholar 

  • Sattler SE, Mène-Saffrané L, Farmer EE, Krischke M, Mueller MJ and DellaPenna D (2006) Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants. Plant Cell 18: 3706–3720

    Article  PubMed  CAS  Google Scholar 

  • Schaller A and Oecking C (1999) Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell 11: 263–272

    PubMed  CAS  Google Scholar 

  • Schaller F, Biesgen C, Müssig C, Altmann T and Weiler EW (2000) 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210: 979–984

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC and Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97: 11655–11660

    Article  PubMed  CAS  Google Scholar 

  • Schilmiller AL, Koo AJ and Howe GA (2007) Functional diversification of acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action. Plant Physiol 143: 812–824

    Article  PubMed  CAS  Google Scholar 

  • Shah J (2005) Lipids, lipases, and lipid-modifying enzymes in plant disease resistance. Annu Rev Phytopathol 43: 229–260

    Article  PubMed  CAS  Google Scholar 

  • Shikata M, Takemura M, Yokota A and Kohchi T (2003) Arabidopsis ZIM, a plant-specific GATA factor, can function as a transcriptional activator. Biosci Biotechnol Bio-chem 67: 2495–2497

    Article  CAS  Google Scholar 

  • Staswick P and Tiryaki I (2004) The oxylipin signal jas-monic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16: 2117–2127

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Su W and Howell SH (1992) Methyl jas-monate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA 89: 6837–6840

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Yuen GY and Lehman CC (1998) Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J 15: 747–754

    Article  PubMed  CAS  Google Scholar 

  • Stelmach BA, Müller A, Henning P, Gebhardt S, Schu-bert-Zsilavecz M and Weiler EW (2001) A novel class of oxylipins, sn-1-O-(12-oxophytodienoyl)-sn-2-O-(hexadecatrienoyl)-monogalactosyl diglyceride, from Arabidopsis thaliana. J Biol Chem 276: 12832–12838

    Article  PubMed  CAS  Google Scholar 

  • Stintzi A and Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reduct-ase required for jasmonate synthesis. Proc Natl Acad Sci USA 97: 10625–10630

    Article  PubMed  CAS  Google Scholar 

  • Stintzi A, Weber H, Reymond P, Browse J and Farmer EE (2001) Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci USA 98: 12938–12842

    Article  Google Scholar 

  • Stratmann JW and Ryan CA (1997) Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccha-ride elicitors. Proc Natl Acad Sci USA 94: 11085–11089

    Article  PubMed  CAS  Google Scholar 

  • Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Koba-yashi K, Ainai T, Yagi K, Sakurai N, Suzuki H, Masuda T, Takamiya K-I, Shibata D, Kobayashi Y and Ohta H (2005) 12-Oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol 139: 1268–1283

    Article  PubMed  CAS  Google Scholar 

  • Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M and Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446: 640–645

    Article  PubMed  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA and Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448: 661–665

    Article  PubMed  CAS  Google Scholar 

  • Thoma I, Krischke M, Loeffler C and Mueller MJ (2004) The isoprostanoid pathway in plants. Chem Phys Lipids 128: 135–148

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA and Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95: 15107–15111

    Article  PubMed  CAS  Google Scholar 

  • Turner JG, Ellis C and Devoto A (2002) The jasmonate signal pathway. Plant Cell 14:: S153–S164

    PubMed  CAS  Google Scholar 

  • Usami S, Banno H, Ito Y, Nishihama R and Machida Y (1995) Cutting activates a 46-kilodalton protein kinase in plants. Proc Natl Acad Sci USA 92: 8660–8664

    Article  PubMed  CAS  Google Scholar 

  • van der Fits L and MemLink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289: 295–297

    Article  PubMed  Google Scholar 

  • Vellosillo T, Martínez M, López MA, Vicente J, Cascón T, Dolan L, Hamberg M and Castresana C (2007) Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell 19: 831–846

    Article  PubMed  CAS  Google Scholar 

  • Vick BA and Zimmerman DC (1983) The biosynthesis of jasmonic acid: a physiological role for plant lipoxygen-ase. Biochem Biophys Res Commun 111: 470–477

    Article  PubMed  CAS  Google Scholar 

  • Vijayan P and Browse J (2002) Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation. Plant Physiol 129: 876–885

    Article  PubMed  CAS  Google Scholar 

  • Vijayan P, Shockey J, Levesque CA, Cook RJ and Browse J (1998) A role for jasmonate in pathogen defense of Arabi-dopsis. Proc Natl Acad Sci USA 95: 7209–7214

    Article  PubMed  CAS  Google Scholar 

  • von Malek B, van der Graaff E, Schneitz K and Keller B (2002) The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta 216: 187–192

    Article  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot (London) 100: 681–697

    Article  CAS  Google Scholar 

  • Weber H, Vick BA and Farmer EE (1997) Dinor-oxo-phyto-dienoic acid: a new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci USA 94: 10473–10478

    Article  PubMed  CAS  Google Scholar 

  • Weber H, Chételat, Reymond P and Farmer EE (2004) Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde. Plant J 37: 877–888

    Article  PubMed  CAS  Google Scholar 

  • Weiler EW, Albrecht T, Groth B, Xia ZQ, Luxem M, Liss H, Andert L and Spengler P (1993) Evidence for the involvement of jasmonates and their octadecanoid precursors in the tendril coiling response of Bryonia dioica. Phyto-chemistry 32: 591–600

    CAS  Google Scholar 

  • Winger AM, Millar AH and Day DA (2005) Sensitivity of plant mitochondrial terminal oxidases to the lipid peroxi-dation product 4-hydroxy-2-nonenal (HNE). Biochem J 387: 865–870

    Article  PubMed  CAS  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M and Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280: 1091–1094

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Chang P-FL, Liu D, Narasimhan ML, Raghothama KG, Hasegawa PM and Bressan RA (1994) Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6: 1077–1085

    PubMed  CAS  Google Scholar 

  • Yan Y, Stolz S, Chetelat A, Reymond P, Pagni M, Dubugnon L and Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19: 2470–2483

    Article  PubMed  CAS  Google Scholar 

  • Ziegler J, Stenzel I, Hause B, Maucher H, Hamberg M, Grimm R, Ganal M and Wasternack C (2000) Molecular cloning of allene oxide cyclase. The enzyme establishing the stereochemistry of octadecanoids and jasmonates. J Biol Chem 275: 19132–19138

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I wish to thank Joyce Tamura for typing the manuscript and Deirdre Fahy for preparing the figures. This work was supported by the US Department of Energy (grant number DE-FG03-99ER20323), U.S. National Science Foundation grant no. MCB-0420199 the National Research Initiative of the USDA CSREES grant no. 2006-35318-17797, and the Agricultural Research Center at Washington State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Browse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Browse, J. (2009). Oxidation of Membrane Lipids and Functions of Oxylipins. In: Wada, H., Murata, N. (eds) Lipids in Photosynthesis. Advances in Photosynthesis and Respiration, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2863-1_18

Download citation

Publish with us

Policies and ethics